Чем отличается альфа от бета излучения. Радиоактивность: альфа-, бета-, гамма-излучение

Не нужно пугаться этого слова: оно обозначает попросту радиоактивные изотопы. Иногда в речи можно услышать слова «радионуклеид», или еще менее литературный вариант - «радионуклеотид». Правильный термин - именно радионуклид. Но что такое радиоактивный распад? Каковы свойства разных видов излучения и чем они отличаются? Обо всем - по порядку.

Определения в радиологии

С тех времен, когда произошел взрыв первой атомной бомбы, многие понятия из радиологии претерпели изменения. Вместо фразы «атомный котел» принято говорить «атомный реактор». Вместо словосочетания «радиоактивные лучи» пользуются выражением «ионизирующие излучения». Словосочетание «радиоактивный изотоп» заменено на «радионуклид».

Долгоживущие и короткоживущие радионуклиды

Альфа-, бета- и гамма-излучения сопровождают процесс распада атомного ядра. Что такое Ядра радионуклидов не являются стабильными - этим они и отличаются от других устойчивых изотопов. В определенный момент запускается процесс радиоактивного распада. Радионуклиды при этом превращаются в другие изотопы, в процессе чего испускаются альфа-, бета- и гамма-лучи. Радионуклиды имеют разный уровень нестабильности - некоторые из них распадаются в течение сотен, миллионов и даже миллиардов лет. К примеру, все изотопы урана, которые встречаются в природе, являются долгоживущими. Есть и такие радионуклиды, которые распадаются в течение секунд, дней, месяцев. Они зовутся короткоживущими.

Выброс альфа-, бета- и гамма-частиц сопровождает не любой распад. Но на самом деле радиоактивный распад сопровождается только выбросом альфа- или бета-частиц. В некоторых случаях этот процесс происходит в сопровождении гамма-лучей. Чистое гамма-излучение в природе не встречается. Чем больше скорость распада радионуклида, тем выше его уровень радиоактивности. Некоторые считают, что в природе существует альфа-, бета-, гамма- и дельта-распад. Это неверно. Дельта-распада не существует.

Единицы измерения радиоактивности

Однако в чем измеряется эта величина? Измерение радиоактивности позволяет выразить интенсивность распада в цифрах. Единица измерения активности радионуклида - беккерель. 1 беккерель (Бк) означает, что 1 распад происходит в 1 сек. Когда-то для этих измерений использовалась гораздо более крупная единица измерения - кюри (Ки): 1 кюри = 37 млрд беккерелей.

Естественно, сопоставлять необходимо одинаковые массы вещества, например 1 мг урана и 1 мг тория. Активность взятой единицы массы радионуклида называется удельной активностью. Чем больше период полураспада, тем меньше удельная радиоактивность.

Какие радионуклиды представляют собой большую опасность?

Свойства гамма-лучей

Этот вид излучения имеет ту же природу, что и ультрафиолетовое излучение, инфракрасные лучи или радиоволны. Гамма-лучи представляют собой фотонное излучение. Однако с чрезвычайно высокой скоростью фотонов. Этот тип излучения очень быстро проникает сквозь материалы. Чтобы задержать его, обычно используют свинец и бетон. Гамма-лучи способны преодолевать тысячи километров.

Миф об опасности

Сравнивая альфа-, гамма- и бета-излучение, люди обычно считают гамма-лучи наиболее опасными. Ведь они образуются при ядерных взрывах, преодолевают сотни километров и вызывают лучевую болезнь. Все это верно, однако не имеет непосредственного отношения к опасности лучей. Так как в этом случае говорят именно об их проникающей способности. Конечно, альфа-, бета- и гамма-лучи различаются в этом отношении. Однако опасность оценивается не проникающей способностью, а поглощенной дозой. Этот показатель высчитывается в джоулях на килограмм (Дж/кг).

Таким образом, измеряется дробью. В ее числителе находится не количество альфа-, гамма- и бета-частиц, а именно энергия. К может быть жестким и мягким. Последнее обладает меньшей энергией. Продолжая аналогию с оружием, можно сказать: значение имеет не только калибр пули, важно и то, из чего производится выстрел - из рогатки или из дробовика.

В 1896г. Беккерель открыл явление радиоактивности.

Беккерель обнаружил, что химический элемент уран самопроиз­вольно (т. е. без каких-либо внешних воздействий) излучает ранее неизвестные невидимые лучи, которые позже были названы радио­активным излучением.

Способность атомов некоторых химических элементов к самопроиз­вольному излучению называют радиоактивностью .

В 1899 г. в результате опыта Эрнес­та Резерфорда, было обнаружено, что радио­активное излучение имеет сложный состав. Резерфорд взял толстостенный свинцовый сосуд с крупицей радия на дне. Пу­чок радиоактивного излучения радия выходил сквозь узкое отверстие и попадал на фотоплас­тинку. После проявления фотопластинки на ней обнаруживалось одно темное пятно - как раз в том месте, куда попадал пучок. Если провести тот же опыт, созда­вая сильное магнитное поле, действующее на пучок, то на проявленной плас­тинке возникало три пятна: одно, центральное, два других - по разные стороны от центрального. В одном потоке присутствовали только положи­тельно заряженные частицы, в другом - отри­цательно заряженные. А центральный поток представлял собой излу­чение, не имеющее электрического заряда.

Положительно заряженные частицы назвали альфа-частицами (α-частицы), отрицательно заряженные - бета-частицами (β-частицы), а нейтральные - гамма-частицами (γ-частицы) или гамма-квантами.

Некоторое время спустя в результате исследования различных физических характеристик и свойств этих частиц (электрического заряда, массы и др.) удалось установить, что α-частица представ­ляет собой ядро атома гелия (); β-частица – это электрон (), а γ-частица – это квант энергии. Появление электрона внутри ядра объясняется распадом нейтрона на протон и электрон.

Радиоактивные излучения часто приводят к изменению структуры ядра:

α- излучение: ,

β -излучение: ,

γ -излучение: .

Число, стоящее перед буквенным обозначением ядра сверху, на­зывается массовым числом, а снизу - зарядовым числом (или атомным номером).

Массовое число ядра атома данного химического элемен­та с точностью до целых чисел равно числу атомных еди­ниц массы, содержащихся в массе этого ядра и равно числу частиц в ядре.

Зарядовое число ядра атома данного химического элемен­та равно числу элементарных электрических зарядов, со­держащихся в заряде этого ядра, и равно числу протонов в ядре.

В процессе радиоактивного распада вы­полняются законы сохранения массового числа и заряда.



Радиоактивные излучения оказывают сильное действие на вещество, особенно на живые клетки. Их действие зависит от вида излучения. При внешнем облучении наиболее опасным является γ – излучение, т.к. оно имеет наибольшую проникающую способность. При внутреннем облучении наиболее опасным является α-излучение, т.к. эти частицы вызывают наибольшую степень ионизацию клеток. Даже сравнительно слабое излучение, которое при полном поглощении повышает температуру тела лишь на 0,001ºС, нарушает жизнедеятельность клеток.

Поэтому при работе с источниками радиации необходимо использовать различные меры защиты:

1. Учет времени и дозы облучения.

2. Применение защитных средств.

Так, для ослабления α-излучения в два раза достаточно листа бумаги, β-излучения – слоя алюминия толщиной 1-5мм, γ-излучения – лист свинца, толщиной 1-2 см.

Билет №24. Опыты Резерфорда. Планетарная модель атома. Состав атомного ядра. Ядерные реакции.

В 1903г. Томсон предложил модель строения атома, в которой весь положительный заряд равномерно распределен по объему атома. В 1911 Резерфорд провел опыт, результаты которого опровергли теорию Томсона. Для опытов Резерфорд использовал свинцовый сосуд с радиоактивным веществом, излучающим α - частицы. Из этого сосуда α-частицы вылетают через узкий канал.

Поскольку α-частицы непосредственно увидеть невозможно, то для их обнаружения служит стеклянный экран, покрытый тонким слоем специального вещества, благодаря чему в местах попадания в экран α-частиц возникают вспышки, которые наблюдаются с помощью микроскопа. Вся эта установка помещается в сосуд, из которого откачан воздух (чтобы устранить рассеяние α-частиц за счет их столкновений с молекулами воздуха).

Если на пути α-частиц нет никаких препятствий, то они падают на экран узким, слегка расширяющимся пучком. Если же на пути α-частиц поместить тонкую фольгу из исследуемого металла, то при взаимодействии с веществом α-частицы рассеиваются по всем направлениям на разные углы β. Некоторое число частиц рассеивалось на углы, близкие к 90°, а единичные частицы - на углы порядка 180°. Резерфорд пришел к выводу, что столь сильное отклонение α-частиц возможно только в том случае, если внутри атома положительный заряд сконцентрирован в очень малом объеме (по сравнению с объемом атома).



На основании этих опытов Резерфорд предположил, что в центре атома находится заряженное положительным зарядом ядро атома. На большом расстоянии от него (по сравнению с его размерами) в атоме находятся электроны. Они притягиваются, но не приближаются вплотную к ядру, потому что быстро движутся вокруг него.

В состав ядра входят положительно заряженные протоны. Каждый протон имеет массу, в 1840 раз большую, чем масса электрона, заряд протона положителен, равен по абсолютному значению заряду электрона. Кроме протонов, в ядрах атомов содержатся нейтроны. Масса нейтрона немного больше массы протона, заряд равен нулю.

В 1903 г. Эрнест Резерфорд и его сотрудник, Фреде­рик Содди,обнаружили, что радиоактивный элемент радий в про­цессе α-распада пре­вращается в другой химический элемент - радон.

Радий и радон - это совершенно разные вещества, они отлича­ются по своим физическим и химическим свойствам. Радий - ме­талл, при обычных условиях он находится в твердом состоянии, а радон - инертный газ. Эти химические элементы занимают разные клетки в таблице Д. И. Менделеева. Их атомы отличаются массой, зарядом ядра, числом электронов в электронной оболочке. Они по-разному вступают в химические реакции.

Дальнейшие опыты с различными радиоактивными препаратами показали, что не только при α-распаде, но и при β-распаде про­исходит превращение одного химического элемента в другой.

После того как в 1911 г. Резерфордом была предложена ядерная мо­дель атома, стало очевидным, что именно ядро претерпевает изме­нения при радиоактивных превращениях. Если бы изменения затрагивали только электронную оболочку атома, то при этом атом превра­щался бы в ион того же самого химического элемента, а не в атом другого элемента. Похожая ситуация происходит и при взаимодействии ядер с частицами или друг с другом.

Превращения атомных ядер, вызванные их взаимодействиями с различными частицами или друг с другом, называют ядерными реакциями.

В процессе ядерных реакций вы­полняются законы сохранения массового числа и заряда.

Одни ядерные реакции протекают с выделением энергии, другие с поглощением. Примером ядерных реакций является цепная реакция деления урана, реакции термоядерного синтеза.

Так, благодаря реакции термоядерного синтеза (), Солнце выделяет огромное количество энергии, что позволяет существовать жизни на Земле.

Навигация по статье:


Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют - ионизирующее излучение или что чаще встречается радиоактивное излучение , или еще проще радиация . К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация - это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация - это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.



Альфа, бета и нейтронное излучение - это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение - это излучение энергии.


Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение - это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое


Нейтронное излучение - это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация:
  • биологическое действие радиации: низкое

Гамма (γ) излучение - это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения - это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение - это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.


Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!



Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.




Видео:


Достаточно большой перечень вопросов породило необычайное открытие радиоактивности. Величайший прорыв в данной сфере сделал ученый Э. Резерфорд, который поместил в магнитное поле особый излучатель, а именно — радиоактивный. В итоге пучок распался на три составляющие.

Особенности излучения

На основе серии опытов, стало известно, что альфа-излучение – это поток положительных частиц, а их параметры абсолютно идентичны тем, которые имеются у ядер гелия. Что касается атома гелия, то у него только 2 электрона.

Помимо альфа-лучей, обнаружены гамма и бета, каждый из них обладает особой силой, имеет радиоактивность. Таким образом, можно смело утверждать, что излучение альфа – это дважды ионизированный атом гелия. Альфа является положительно заряженным, гамма – нейтральным, а что касается бета, то он является отрицательным лучом. Альфа, гамма, а также бета имеют сильные отличия, касающиеся способности проникающей. Простыми словами, гамма, альфа, бета отличны тем, что они поглощаются разными компонентами с различной интенсивностью.

Гамма – это лучи, напоминающие излучение рентгена, но их проникающая способность гораздо выше. Это приводило к мысли, что гамма лучи являются электромагнитными волнами. Однако сомнения отошли в сторону, когда обнаружили дифракцию гамма лучей на особых кристаллах также была определена их длина. Как ни странно, длина вол гамма лучей очень маленькая, а именно – до 10-11 сантиметров.

Что касается бета-лучей, то их рассматривали в качестве заряженной частицы. С бета было намного легче проводить эксперименты. Цель проведенных исследований – определит массу, заряд бета-лучей. Было установлено, что бета-частицы являются электронами, скорость движения которых приближена к скорости света.

Альфа-излучения имеют источники:

  • реакторы;
  • объекты промышленности урановой;
  • распад весьма тяжелых химических элементов, в результате чего наблюдается проявление ядер гелия;
  • эксперименты, которые осуществляются на ускорителях частиц, лабораториях радиоизотопных;
  • ускорение гелия.

Каждый из указанных лучей имеет собственный спектр излучения. Простыми словами, спектр – это распределение частиц согласно величинам измеряемым, которое приведено к определенным условиям. Спектр различают по виду частиц. Что касается альфа-спектра, то его принято считать дискретным.

Методы защиты

Альфа-излучения имеют свой спектр, а также определенную радиоактивность, которые способны оказывать пагубное воздействие на человека. Поражающая радиоактивность потока альфа-частиц не слишком велика.

Принято считать, что спектр подобного излучения неопасен, но не стоит забывать про радиоактивность. Проникновение массивных частиц в организм человека вместе с водой, едой или же сквозь кожный покров, имеется риск серьезного отравления. Осложнение возникает по причине мощного ионизирующего воздействия, формирования кислорода, окислителя, водорода свободного. За счет того, радиоактивность оказывает воздействие на мозг, скапливаясь в нем, наблюдается появления множества патологий, которые активно снижают адаптационные, защитные функции организма.

Не смотря не радиоактивность, альфа-частицы признаны наиболее безопасными, так как после внешнего облучения не требуются защитные средства. Опасность поджидает от внутреннего облучения, когда радиоактивность частиц действует более хитро. Для предотвращения неприятностей, достаточно не допустить попадание в организм радионуклидов, используя индивидуальную защиту:

  • одежда, сделанная из специального материала;
  • если кожа чувствительная, можно пользоваться кремом, дерматологической пастой;
  • для глаз подойдут щитки из специального оргстекла.

В перечень рекомендаций входит информация о воздействии пищевых продуктов на выведение, нейтрализацию радионуклидов в организме. Такая способность имеется у продуктов, которые богаты витамином С, В. Отлично помогают перепелиные яйца, но если доза облучения не слишком большая. Они считаются богатым источником аминокислот, витаминов и микроэлементов. Из растений, которые способны помочь, можно выделить топинамбур.

Сфера применения излучения

Кроме защиты от альфа-частиц, была разработана особая терапия с их использованием. Лечебный сеанс позволяет пользоваться изотопами, которые были получены при излучении, а именно – торон, радон, которые обладают небольшими сроками жизни, быстро ликвидируются из организма.

Примеры применения альфа-излучения в медицине:

  • пероральное применение воды радоновой;
  • прием ванны радоновой;
  • дыхательная процедура воздухом с радонами.

Доктора абсолютно и твердо уверены, что влияние альфа-частиц можно фокусировать, уничтожая раковые клетки. Подобная целебная терапия способна оказать седативное, обезболивающее, противовоспалительное влияние на человека. Рекомендовано к лечению опорно-двигательного аппарата, сердечно-сосудистых и гинекологических недугов. Процедура проводится строго под контролем лечащего врача и специально обученного человека.

Невидимые лучи проникают сквозь все предметы вокруг и сквозь нас самих. Мы их никак не воспринимаем и не чувствуем. Защититься от них невозможно, они неуловимы и всепроникающи. Они могут излечивать и могут убивать, могут способствовать рождению невиданных ранее существ на земле и приводить к возникновению новых звёздных скоплений в отдалённых уголках нашей галактики.

Всё это- не фрагмент бреда сумасшедшего, взятый из истории его болезни и не краткий синопсис очередного голливудского боевика. Это окружающая нас реальность, которая называется радиоактивное или ионизирующее излучение, если коротко - .

Явление радиоактивности в общих чертах было сформулировано французским физиком А. Беккерелем в 1896 году. Конкретизировал это явление и более подробно описал Э. Резерфорд в 1899 году. Именно он смог установить, что радиоактивное излучение неоднородно по своей природе и состоит, как минимум, из трёх видов лучей. Эти лучи по-разному отклонялись в магнитном поле и поэтому получили разное название. Проникающая способность альфа, бета и гамма-излучения различна.

Повседневная защита

Одним из самых эффективных способов защиты в повседневной жизни является применение так называемых или индивидуальных дозиметров. Это особенно актуально в силу того, что человеческий организм лишён возможности воспринимать радиацию через органы чувств, он её просто не замечает. Выделяют следующие индивидуальные дозировки:

  • Нормальная повседневная доза: 10−20 микрорентген в час.
  • Нормальная одноразовая доза: 100 микрорентген.
  • Смертельная доза: 600 рентген. При получении такой одноразовой дозы облучения человек погибает в течение одной-двух недель.

Необходимо иметь в виду что элементарное мытьё рук чистой водой с мылом является профилактикой радиоактивного заражения, так как в этом случае происходит эффективное удаление заражённых радиоактивных веществ с поверхности кожи.

Не нужно пытаться открыть или разбирать случайно найденные предметы с радиационной маркировкой. Это не только опасно для вашего здоровья и здоровья окружающих. Нужно иметь в виду, что в Уголовном кодексе имеется соответствующая статья за намеренное или случайное радиоактивное загрязнение, поэтому лучше сразу сообщите об опасной находке в соответствующие службы.