Изменение лабильности при различных функциональных состояниях. Общие свойства возбудимых тканей

Реферат по физиологии на тему: «Возбудимость и её изменения, лабильность»

Выполнил: студент 204 группы

Пономарев Петр

Возбудимость и её измерение, лабильность.

Свойства биологических мембран.

Мембранный потенциал покоя и действия.

Фазы возбудимости при возбуждении.

Возбудимость её измерения, лабильность.

Возбудимость - более узкое понятие, которое характеризует свойство тканей возбуждаться в ответ на действие раздражителя. Ткани, обладающие этим свойством, называются возбудимыми. Проявляется возбуждение возникновением потенциала действия. В основе возбуждения лежат сложные физико-химические процессы. Начальный пусковой момент возбуждения - изменения ионной проницаемости и электрических потенциалов мембраны. Возбудимые ткани имеют ряд свойств: раздражимость - способность тканей воспринимать раздражение, возбудимость - способность тканей реагировать возбуждением на раздражение, проводимость - способность распространять возбуждение, лабильность - скорость протекания элементарных циклов возбуждения. Лабильность отражает время, в течение которого ткань восстанавливает работоспособность после очередного цикла возбуждения. Порог раздражения (в физиологии нервных и мышечных клеток), наименьшая сила раздражителя (обычно электрического тока), способная вызвать распространяющийся потенциал действия

Методы изучения описанных явлений разнообразны. Так, о возбудимости можно судить по наименьшей силе раздражителя, необходимой для возникновения той или иной рефлекторной реакции или по пороговой силе тока или пороговому сдвигу потенциала, достаточным для возникновения ПД. Здесь необходимо ввести такие понятия, как реобаза и хронаксия. Реобаза (от греч. rheos - течение, поток и basis - ход, движение; основание), наименьшая сила постоянного электрического тока, вызывающая при достаточной длительности его действия возбуждение в живых тканях. Понятие реобазы и хронаксии ввёл в физиологию Л. Лапик в 1909, определяя зависимость между силой тока и длительностью его действия при изучении наименьшего (порогового) эффекта возбудимых тканей. Реобаза, как и хронаксия, даёт представление о возбудимости тканей и органов по порогу силы и длительности действия раздражения. Реобаза соответствует порогу раздражения и выражается в вольтах или миллиамперах. Значение реобазы можно вычислить по формуле: i = a/t + b, где i - сила тока, t - длительность его действия, а и b - константы, определяемые свойствами ткани. Константа b является Р., так как при длительном действии раздражающего тока отношение a/t будет очень мало и i практически равняется b. Р. нередко называются пороговые значения не только электрических, но и других раздражителей. Хронаксия (от греч. chronos - время и axia - цена, мера), наименьшее время действия на ткань постоянного электрического тока удвоенной пороговой силы (удвоенной реобазы), вызывающего возбуждение ткани. Было также экспериментально установлено (голландский физик Л. Горвег, 1892, французский физиолог Ж. Вейс, 1901), что величина стимула, вызывающего возбуждающий эффект в тканях, находится в обратной зависимости от длительности его действия и графически выражается гиперболой - кривая <сила - время. Минимальная сила тока, которая при неограниченно долгом действии вызывает эффект возбуждения (реобаза), соответствует на рисунке отрезку OA (BC). Наименьшее т. н. полезное время действия порогового раздража

ющего стимула соответствует отрезку OC (полезное потому, что дальнейшее увеличение времени действия тока не имеет значения для возникновения потенциала действия). При кратковременных раздражениях кривая силы - времени становится параллельной оси ординат, т. е. возбуждение не возникает при любой силе раздражителя. Приближение кривой асимптотически к линии, параллельной абсциссе, не позволяет достаточно точно определять полезное время, т.к. незначительные отклонения реобазы, отражающие изменения функционального состояния биологических мембран в покое, сопровождаются значительными колебаниями времени раздражения. В связи с этим Лапик предложил измерять другую условную величину - хронаксию, т. е. время действия раздражителя, равное двойной реобазе [на рисунке соответствует отрезку OD (EF)]. При данной величине раздражителя наименьшее время его действия, при котором возможен пороговый эффект, равно OF. Установлено, что форма кривой, характеризующей возбудимость ткани в зависимости от интенсивности и длительности действия раздражителя, однотипна для самых разнообразных тканей. Различия между ними касаются только абсолютного значения соответствующих величин и, прежде всего, времени, т. е. возбудимые ткани отличаются друг от друга временной константой раздражения. Лабильность можно измерить, раздражая ткань электрическим током различной частоты. Момент, когда ткань произойдёт преобразование ритма (ткань перестанет воспроизводить заданный ритм без изменений) и будет лабильностью данной ткани. Единицы её измерения - количество воспроизводимых импульсов за единицу времени [имп./сек.(мин.), и т. д. ]. Проводимость можно охарактеризовать расстоянием, преодолённым импульсом за единицу времени, то есть скоростью распространения импульса.

Лабильность, или функциональная подвижность (Н.Е.Введенский)- это скорость протекания одного цикла возбуждения, т.е. ПД. Как видно из определения, лабильность ткани зависит от длительности ПД. Это означает, что лабильность, как и ПД, определяется скоростью перемещения ионов в клетку и из клетки, которая, в свою очередь, зависит от скорости изменения проницаемости клеточной мембраны. Особое значение при этом имеет длительность рефрактерной фазы: чем больше рефрактерная фаза, тем ниже лабильность ткани. Мерой лабильности является максимальное число ПД, которое ткань может воспроизвести в 1 с. В эксперименте лабильность исследуют в процессе регистрации максимального числа ПД, которое может воспроизвести клетка при увеличении частоты ритмического раздражения.

Лабильность различных клеток существенно различается. Так, лабильность нерва равна 500-1000, нейронов - 20-200, синапса - порядка 100 импульсов в секунду. Лабильность клеток понижается при длительном бездействии и при утомлении.

Следует отметить, что при постепенном увеличении частоты ритмического раздражения лабильность ткани повышается, т.е. ткань отвечает более высокой частотой возбуждения по сравнению с исходной частотой. Это явление открыто А.А.Ухтомским и называется усвоением ритма раздражения.

Лабильность – это понятие, использующееся для обозначения подвижности. Область применения может немного изменять смысловые характеристики, обозначая как число нервных импульсов передаваемых в единицу времени клеткой, так и скорость запуска и остановки психических процессов.

Лабильность характеризует скорость протекания (от возникновения реакции до торможения) элементарных процессов, и измеряется наибольшей частотой воспроизведения импульса без изменений в работе ткани и времени восстановления функций. Данный показатель не считается постоянной величиной, поскольку может изменяться от внешних факторов (тепло, время дня, силовые воздействия), воздействий химических веществ (вырабатываемых организмом или употребляемых) и эмоциональных состояний, поэтому возможно наблюдать лишь динамику и предрасположенность организма, преобладающий уровень. Именно изменение показателей лабильности является ключевым при диагностике различных заболеваний и норм.

Что такое лабильность

В научном применении лабильность употребляется синонимично подвижности (в норме), неустойчивости (при патологии) и изменчивости (как характеристики динамики состояния и процессов). Чтобы понимать широту употребления данного термина, можно рассмотреть примеры того, что есть лабильность настроения температуры тела, психики и физиологии, а соответственно применима ко всем процессам, имеющим в своих показателях скорость, постоянство, ритм, амплитуду и прочие динамические характеристики.

Протекание любых процессов организма регулируется нервной системой, поэтому, даже говоря о показателях лабильности пульса или настроения, мы все равно говорим о степени лабильности нервной системы (центральной или вегетативной, в зависимости от локализации неустойчивости). Вегетативная нервная система регулирует внутренние органы и системы, соответственно от ее работы, умения поддерживать ритм и устойчивость процессов зависит общее состояние организма.

Вегетативная лабильность приносит нарушения в работе сердца (проявления находят себя в виде аритмии, проблем с давлением и в качестве ), работе желез (могут начаться проблемы с потоотделением или выработкой необходимых для качественного функционирования организма веществ). Многие, казалось бы, психологические проблемы или связанные с ЦНС на самом деле решаются на уровне снижения лабильности вегетативной, что обеспечивает продуктивный сон и усваивание полезных микроэлементов. При этом стоить помнить, что сигнализировать об уровне стресса или критической эмоциональной ситуации в первую очередь не центральная, а именно вегетативная система, повышением своей лабильности. Механизмы, активизирующие работу всех систем органов для преодоления тяжелых или экстремальных ситуаций, задействуют внутренние резервы организма, заставляя сердце ускорять ритм, легкие поглощать больше воздуха, железа выводить излишек адреналина с потом, а только потом подключаются реакции ЦНС.

Лабильность нервной системы или психическая лабильность характеризуется патологическим состоянием нарушения настроения, выражающегося в его перепадах и непостоянстве. Состояние может являться нормой для подросткового возраста, но причисляться к спектру патосостояний для взрослых и требует медицинской помощи, также работы психолога, даже без назначения препаратов.

Лабильность в психологии

Психическая лабильность, рассматриваемая в психологии, подразумевает ее подвижность, а в некоторых случаях и нестабильность, при этом сама наука занимается изучением только этого аспекта лабильности, не вдаваясь в физиологию. В большинстве источников лабильность психики рассматривается как негативное качество, требующее коррекции, но при этом не отдается должное тому, что это основной адаптивный механизм психики. Именно скорость реакции и переключения между быстро и часто неожиданно сменяющимися событиями внешней жизни помогли человечеству выжить. Противоположностью является психики, когда на протяжении длительного времени человек остается постоянен, а любые изменения выбивают его из нормального состояния. Любая из этих характеристик в своем крайнем проявлении является негативной, а при умеренных показателях дает свои плюсы.

Проблемы с лабильностью, когда человек приходит к психологу, связаны с частой сменой настроения, при этом все спектры проживаются не поверхностно, а действительно глубоко (т.е. если стало грустно то до мыслей о вскрытии вен, а если весело, то хочется танцевать на рабочем месте и дарить прохожим конфеты – и все это в течение одного часа). Именно трудности в совладании со своими и непонимание как это можно откорректировать приносит многим и не только душевные страдания, но следующие за этим изменения в здоровье, поскольку вегетативная система, будучи подчиненная эмоциональным состояниям также повышает уровень своей лабильности.

Подобные явления могут быть обоснованы типом организации нервной системы, так у людей с быстрота реакций обусловлена уже природой, а соответственно усиление лабильности до патологического состояния более вероятно. Также спровоцировать перепады настроения могут частые , полученные в раннем возрасте , нахождение в травмирующих ситуациях в настоящий момент. Но не стоит исключать и физиологические причины, влияющие на психологическое состояние человека: опухоли мозга, ЧМТ, сосудистые заболевания.

Коррекция таких неприятных состояний начинается с диагностики и исключения физиологических причин, далее по необходимости возможна коррекция препаратами, стабилизирующими настроение (антидепрессанты и транквилизаторы), сопровождающаяся курсом психотерапии. При тяжелой степени может быть актуальным лечение в стационаре, при самой легкой можно справиться, посещая психолога, без отрыва от привычной жизни.

Лабильность в физиологии

В физиологии лабильность рассматривают как свойство ткани, характеризующее ее изменение при длительном возбуждении. Реакции на длительное возбуждение могут выражаться в трех типах реагирования: ответе на каждый импульс, трансформация исходного ритма в более редкий (например, ответ на каждый третий импульс) или же прекращение реагирования. Для каждой клеточки организма этот ритм различен, при этом он может отличаться от ритма органа, состоящего из этих клеток, а также от ритма всей системы органов. Чем быстрее ткань реагирует на раздражение, тем выше считается ее лабильность, но при этом мало показателей лишь этого времени, необходимо еще учитывать время, необходимое для восстановления. Так, реакция может быть довольно быстрой, но за счет большого времени восстановления общая лабильность будет довольно низкой.

Повышается или снижается лабильность в зависимости от потребностей организма (рассматривается вариант нормы, без заболеваний), так может повыситься от скорости обмена веществ, который заставляет все системы ускорять ритм работы. Замечено повышение лабильности, что когда организм находится в рабочем активном состоянии, т.е. лабильность ваших тканей значительно выше, если бежите, чем, если читаете лежа, причем показатели сохраняются в повышенном значении некоторое время после прекращения активной деятельности. Подобные реакции связаны с усвоением ритма, отвечающего актуальным условиям среды и деятельностным потребностям.

К регулировке физиологической лабильности можно обращаться также при нарушениях психологического спектра, поскольку множество состояний имеет своей первопричиной не психические нарушения или эмоциональные переживания, а физиологические нарушения. Например, физиологическое воздействие может убрать проблемы со сном, чем автоматически повысит уровень внимания и снизит , терапия которых без учета физиологических показателей была бы неэффективной.

Интеллектуальная лабильность

Интеллектуальная лабильность является одной из составляющих лабильности нервной системы и отвечает за процессы переключения между процессами активации и торможения. В жизни это выглядит как достаточно высокий уровень умственного развития и способности к логическому анализу поступающей информации. Поскольку ежесекундно поступает критически огромное количество информационных блоков, требующих , то возникает необходимость максимально быстро (на подсознательном автоматическом уровне) рассортировать их на значимые и не значимые.

Наличие большой базы знаний в становится не актуальным и свидетельствует не об , а об эрудированности, гораздо более значимой является способность к переключению между различными источниками информации, между различной информацией по смыслу, а также в кратчайшие сроки переходить к решению следующей (пусть и противоположной) задачи. При этой скорости переключения главное сохранить способность к умению выделять главное для поставленной задачи на данный момент времени. Именно такой процесс интеллектуальной работы и обеспечивает высокая интеллектуальная лабильность.

Раньше о таком свойстве не знали, потом говорили, но редко, а сейчас, когда темп жизни ускоряется, количество потребляемой информации растет такими темпами, что человеку, жившему двести лет назад, понадобился бы месяц, чтобы осознать то, что мы перерабатываем в течение часа, это становится определяющим фактором успеха. Это дает способность к адекватному и максимально полезному реагированию в изменяющихся условиях, способствует мгновенному анализу множества факторов, что позволяет минимизировать возможность ошибки.

Помимо этого, быстрое переключение между различными темами и проблематиками дает нестандартность мышления, новые способы решения старых проблем, происходит быстрое усвоение знаний и навыков, причем происходит это на более глубоком уровне. Например, исторические данные по одному и тому же событию, почерпнутые из разных источников (тут уже не обойтись без использования возможностей современного мира) дает более объективное и масштабное понимание, чем цитирование точки зрения автора учебника. Способность к быстрому обучению обусловлена тем, что нет необходимости настраиваться на поступление материала – десятиминутное чтение статьи в маршрутке, сопровождающееся прослушиванием новой музыки или написание диплома с перерывами на просмотр обучающих роликов становится привычным способом функционирования, предоставляющим новые возможности.

Эмоциональная лабильность

Лабильность настроения, являющаяся основным отражением эмоциональной лабильности, представляет собой изменчивость настроенческого полюса, часто без выраженных для этого причин. За наше эмоциональное состояние отвечает нервная система и когда она ослаблена, то становится сверхчувствительной, что объясняет мгновенную и сильную реакцию даже на незначительные раздражители. Окраска может быть любой – как счастье, так и , с одинаковой легкостью возникают агрессивные аффекты и апатичная грусть.

К симптоматике может относиться спонтанность поступков, импульсивность, отсутствие и возможности прогнозировать последствия собственных действий. Возникновение аффективных вспышек и неконтролируемых состояний по незначительным или отсутствующим поводам послужило причиной занесения эмоциональной лабильности в списки психиатрических отклонений, требующих стабилизации под наблюдением врача. Также может являть не отдельным заболеванием, а симптом более опасных и сложных (тяжелые опухоли, проблемы с давлением, скрытые последствия черепно-мозговых травм и пр.). Тяжело диагностируется в детском возрасте, поскольку мало изучена и часто путается с , поэтому для диагностирования необходима команда специалистов психиатра, психолога и невропатолога.

Проявляется эмоциональная нестабильность в неусидчивости, отсутствии терпения и остром реагировании на критику или препятствия, наблюдаются трудности в установлении логических цепочек, а также перепады настроения. Данные перепады отличны от маниакально-депрессивного расстройства и характеризуются быстрой сменой состояний при таком же глубоком переживании эмоционального спектра.

Способствует такому развитию эмоциональной сферы любой перегруз нервной системы: эмоциональное напряжение, психотравмы или их актуализация, гипер- или гиповнимание со стороны социума, гормональные изменения (подростковый и климактерический возраст, беременность). Из физиологических причин: соматические заболевания, дефицит витаминов (особенно группы В, необходимых для поддержания работы НС), а также тяжелые физические условия.

Если эмоциональная лабильность ставится как диагноз, то ее корректировкой должен заниматься психиатр, если состояние не настолько плачевно, то назначается курс профилактики и у психолога. В любом случае, относиться пренебрежительно к таким проявлениям, объясняя дурным характером, не стоит.

Физиология возбудимых тканей изучает основные закономерности взаимодействия между организмом, его составляющими и действующими факторами внешней среды.

Возбудимые ткани — специально приспособленные к осуществлению быстрых ответных реакций на действие раздражителя нервная ткань, железистая ткань и мышечная ткань.

Человек и животные живут в мире света, звуков, запахов, действия сил гравитации, механических давлений, переменной температуры и прочих сигналов внешней или внутренней среды. Каждый из своего собственного опыта знает, что мы не только способны мгновенно воспринимать эти сигналы (называемые также раздражителями), но и реагировать на них. Это восприятие осуществляется структурами нервной ткани, а одной из форм реагирования на воспринятые сигналы являются двигательные реакции, осуществляемые мышечными тканями. В настоящей главе будут рассмотрены физиологические основы процессов и механизмов, обеспечивающих восприятие и реагирование организма на разнообразные сигналы внешней и внутренней среды.

Важнейшими специализированными тканями организма, обеспечивающими восприятие сигналов и ответные реакции на действие разнообразных раздражителей, служат нервная и мышечная ткани, которые традиционно называют возбудимыми тканями. Однако истинно возбудимыми в них являются мышечные клетки и нейроны. Клетки же нейроглии, которых в мозге приблизительно в 10 раз больше, чем , не обладают возбудимостью.

Возбудимость — способность клеток реагировать определенным образом на действие раздражителя.

Возбуждение — активный физиологический процесс, ответная реакция возбудимых клеток, проявляющаяся генерацией потенциала действия, его проведением и для мышечных клеток сокращением.

Возбудимость в эволюции клеток развилась из свойства раздражимости, присущей всем живым клеткам, и является частным случаем раздражимости.

Раздражимость — это универсальное свойство клеток отвечать на действие раздражителя изменением процессов жизнедеятельности. Например, нейтрофильные , восприняв своими рецепторами действие специфического сигнала — антигена, прекращают движение в потоке крови, прикрепляются к стенке капилляра и мигрируют в направлении воспалительного процесса в ткани. Эпителий слизистой полости рта на действие раздражающих веществ реагирует увеличением выработки и выделения слизи, а эпителий кожи при воздействии ультрафиолетовых лучей накапливает защитный пигмент.

Возбуждение проявляется специфическими и неспецифическими изменениями, регистрируемыми в клетке.

Специфическим проявлением возбуждения для нервных клеток являются генерация и проведение потенциала действия (нервного импульса) на относительно большие расстояния без уменьшения его амплитуды, а для мышечных клеток — генерация, проведение потенциала действия и сокращение. Таким образом, ключевым показателем возникновения возбуждения является генерация потенциала действия. Признак наличия потенциала действия — перезарядка (инверсия знака заряда). При этом па короткое время поверхность мембраны вместо положительного, имеющегося в покое, приобретает отрицательный заряд. У клеток, не обладающих возбудимостью, при действий раздражителя разность потенциалов на клеточной мембране может лишь изменяться, но это не сопровождается перезарядкой мембраны.

К неспецифическим проявлениям возбуждения нервных и мышечных клеток относят изменение проницаемости клеточных мембран для различных веществ, ускорение обмена веществ и соответственно увеличение поглощения клетками кислорода и выделения углекислого газа, снижение рН, возрастание температуры клетки и т.д. Эти проявления во многом сходны с компонентами ответной реакции на действие раздражителя невозбудимых клеток.

Возбуждение может возникать под влиянием сигналов, поступающих из внешней среды, из микроокружения клетки, и спонтанно (автоматически) из-за изменения проницаемости клеточной мембраны и обменных процессов в клетке. О таких клетках говорят, что они обладают автоматией. Автоматия присуща клеткам водителя ритма сердца, гладким миоцитам стенок сосудов и кишечника.

В эксперименте можно наблюдать развитие возбуждения при непосредственном воздействии раздражителей на нервную и мышечную ткани. Различают раздражители (сигналы) физической (температура, электрический ток, механические воздействия), химической ( , нейромедиаторы, цитокины, факторы роста, вкусовые, пахучие вещества) и физико- химической природы (осмотическое давление, рН).

По признаку биологического соответствия раздражителей специализации сенсорных рецепторов, воспринимающих в организме воздействие этих раздражителей, последние делят на адекватные и неадекватные.

Адекватные раздражители - раздражители, к восприятию которых рецепторы приспособлены и реагируют на малую силу воздействия. Например, адекватными для фоторецепторов и других клеток сетчатки глаза являются кванты света, ответная реакция на которые регистрируется в фоторецепторах сетчатки при поглощении лишь 1-4 квантов.

Неадекватные раздражители не вызывают возбуждения даже при значительной силе воздействия. Лишь при чрезмерных, граничащих с повреждением, силах они могут вызвать возбуждение. Так, ощущение искр света может возникнуть при ударе в область глаза. При этом энергия механического, неадекватного раздражителя в миллиарды раз превышает величину энергии светового раздражителя, вызывающего ощущение света.

Состояния клеток возбудимых тканей

Все живые клетки обладают раздражимостью, т.е. способностью реагировать на различные стимулы и переходить из состояния физиологического покоя в состояние активности. Этот процесс сопровождается изменением обмена веществ, а дифференцированные ткани (нервная, мышечная, железистая), осуществляющие специфические функции (проведение нервного импульса, сокращение или выделение секрета), — еще и изменением электрического потенциала.

Клетки возбудимых тканей могут находиться в трех различных состояниях (рис. 1). При этом клетки из состояния физиологического покоя могут переходить в активные состояния возбуждения или торможения, и наоборот. Клетки, находящиеся в состоянии возбуждения, могут переходить в состояние торможения, а из состояния торможения — в состояние возбуждения. Скорость перехода различных клеток или тканей из одного состояния в другое значительно различается. Так, двигательные нейроны спинного мозга могут от 200 до 300 раз в секунду переходить из состояния покоя в состояние возбуждения, тогда как вставочные нейроны — до 1000 раз.

Рис. 1. Взаимосвязь между основными физиологическими состояниями клеток возбудимых тканей

Физиологический покой — состояние, характеризующееся:

  • относительно постоянным уровнем обмена процессов;
  • отсутствием функциональных проявлений ткани.

Активное состояние возникает под действием раздражителя и характеризуется:

  • выраженным изменением уровня обменных процессов;
  • проявлениями функциональных отправлений ткани.

Возбуждение — активный физиологический процесс, возникающий под действием раздражителя, способствующий переходу ткани из состояния физиологического покоя к специфической деятельности (генерация нервного импульса, сокращение, секреция). Неспецифические признаки возбуждения:

  • изменение заряда мембраны;
  • повышение обменных процессов;
  • увеличение затраты энергии.

Торможение — активный физиологический процесс, возникающий под действием определенного раздражителя и характеризующийся угнетением или прекращением функциональной активности ткани. Неспецифические признаки торможения:

  • изменение проницаемости клеточной мембраны;
  • изменение движения ионов через нее;
  • изменение заряда мембраны;
  • снижение уровня обменных процессов;
  • снижение затраты энергии.

Основные свойства возбудимых тканей

Любая живая ткань обладает следующими свойствами: возбудимостью, проводимостью и лабильностью.

Возбудимость — способность ткани отвечать на действие раздражителей переходом в активное состояние. Возбудимость характерна для нервной, мышечной и железистой тканей. Возбудимость обратно пропорциональна силе действующего раздражителя: В = 1/S. Чем больше сила действующего раздражителя, тем меньше возбудимость, и наоборот. Возбудимость зависит от состояния обменных процессов и заряда клеточной мембраны. Невозбудимость = рефрактерность. Наибольшей возбудимостью обладает нервная ткань, затем поперечно-полосатая скелетная и сердечная мышечная ткань, железистая ткань.

Проводимость — способность ткани проводить возбуждение в двух или одном направлении. Показателем проводимости является скорость проведения возбуждения (от 0,5 до 120 м/с в зависимости от ткани и строения волокна). Быстрее всего возбуждение передается по миелинизированному нервному волокну, затем по немиелинезированному волокну, и самой низкой проводимостью обладает синапс.

Функциональная лабильность — способность ткани воспроизводить без искажения частоту ритмически наносимых импульсов. Показателем функциональной лабильности является количество импульсов, которое данная структура может передавать без искажения за единицу времени. Например, нерв — 500-1000 имп/с, мышца — 200-250 имп/с, синапс — 100-120 имп/с.

Роль силы раздражится и времени его действия. Хронаксия - это временная характеристика возбудимости. Зависимость между пороговой интенсивностью раздражения и длительностью называют кривой силы длительности или кривой Гоорвега — Вейсса (рис. 2). Она имеет форму равносторонней гиперболы. На оси абсцисс откладывают время, на оси ординат — пороговую интенсивность раздражения.

Рис. 2. Кривая силы длительности (Гоорвега — Вейсса)

По оси абсцисс отложено время (t); по оси ординат — пороговая интенсивность раздражения (i); 0А — реобаза: 0В — двойная реобаза: ОД — хропаксия; 0Ж- полезное время

Из рис. 2 можно видеть, что при слишком малой величине интенсивности раздражения (менее OA) ответная реакция не возникает при любой его длительности. Отсутствует реакция и при слишком малом времени действия раздражителя (менее ОГ). При интенсивности раздражения, соответствующей отрезку OA, возникает возбуждение при условии большей длительности действия раздражающего импульса. В пределах времени, определяемого отрезком ОЖ, имеет место зависимость между пороговой интенсивностью и длительностью раздражения: меньшей длительности раздражающего импульса соответствует большая пороговая интенсивность (отрезку ОД соответствует OB, а ОЕ — отрезку ОБ). За пределами этого времени (ОЖ) изменение длительности действия раздражителя уже не влияет на величину порога раздражения. Наименьшее время, в течение которого проявляется зависимость между пороговой интенсивностью раздражения и его длительностью, получило название полезного времени (отрезок ОЖ). Полезное время является временным показателем возбуждения. По его величине можно судить о функциональном состоянии различных возбудимых образований. Однако для определения полезного времени необходимо найти несколько точек кривой, для чего требуется наносить множество раздражений. Поэтому большое распространение получило определение другого временного показателя, который ввел в практику физиологических исследований Л. Лап и к (1907). Он предложил для характеристики скорости возникновения процесса возбуждения параметры: реобазу и хронаксию.

Реобаза — это пороговая интенсивность раздражения при большой длительности его действия (отрезок OA); хронаксия - время, в течение которого должен действовать ток, равный двойной реобазе (ОВ), для получения порогового ответа (отрезок ОД). В течение этого времени происходит уменьшение мембранного потенциала до величины, соответствующей критическому уровню деполяризации. Для разных возбудимых образований величина хронаксии неодинакова. Так, хронаксия локтевого нерва человека составляет 0,36 мс, срединного — 0,26 мс, общего сгибателя пальцев — 0,22 мс, а общего разгибателя — 0,58 мс.

Формула М. Вейса

где I — пороговая сила тока; t — время действия раздражителя (с); а — константа, характеризующая постоянное время раздражения с момента, когда кривая переходит в прямую линию, идущую параллельно оси ординат; b — константа, соответствующая силе раздражения при постоянной его длительности, когда кривая переходит линию, идущую параллельно оси абсцисс.

Показатели возбудимости

Для оценки состояния возбудимости у человека и животных исследуют в эксперименте ряд ее показателей, которые указывают, с одной стороны, на какие раздражители реагирует возбудимая ткань, а с другой — как она реагирует на воздействия.

Возбудимость нервных клеток, как правило, выше, чем мышечных. Уровень возбудимости зависит не только от вида клетки, но и от многочисленных факторов, влияющих на клетку и особенно на состояние се мембраны (проницаемости, поляризации и т.д.).

К показателям возбудимости относят следующие.

Порог силы раздражителя — это минимальная величина силы действующего раздражителя, достаточная для инициирования возбуждения. Раздражители, сила которых ниже пороговой, называют подпороговыми, а имеющие силу выше пороговой — над- или сверхпороговыми.

Между возбудимостью и величиной порога силы имеется обратная зависимость. Чем на меньшие по силе воздействия возбудимая клетка или ткань реагирует развитием возбуждения, тем их возбудимость выше.

Возбудимость ткани зависит от ее функционального состояния. При развитии патологических изменений в тканях их возбудимость может существенно понижаться. Таким образом, измерение порога силы раздражителя имеет диагностическую значимость и используется в электродиагностике заболеваний нервной и мышечной тканей. Одним из ее примеров может быть электродиагностика заболеваний пульпы зуба, получившая название электроодонтометрия.

Электроодонтометрия (электроодонтодиагностика) — метод использования электрического тока с диагностической целью для определения возбудимости нервной ткани зубов (сенсорных рецепторов чувствительных нервов пульпы зубов). В пульпе зуба содержится большое количество чувствительных нервных окончаний, реагирующих на определенной силы механические, температурные и другие воздействия. При электроодонтометрии определяется порог ощущения действия электрического тока. Порог силы электрического тока для здоровых зубов составляет 2-6 мкА. при среднем и глубоком кариесе — 10-15, остром пульпите — 20-40, при гибели коронковой пульпы — 60, при гибели всей пульпы — 100 мкА и более.

Величина пороговой силы раздражения возбудимой ткани зависит от продолжительности воздействия раздражителя.

Это можно проверить в эксперименте при воздействии импульсов электрического тока на возбудимую ткань (нерв или мышцу), наблюдая, при каких значениях силы и продолжительности импульса электрического тока ткань отвечает возбуждением, а при каких значениях возбуждение не развивается. Если продолжительность воздействия будет очень короткой, то возбуждение в ткани может не возникнуть даже при сверхпороговых воздействиях. Если продолжительность действия раздражителя увеличивать, то ткань начнет реагировать возбуждением на более низкие по силе воздействия. Возбуждение возникнет при наименьшем по силе воздействии, если его длительность будет бесконечно большой. Зависимость между порогом силы и порогом времени раздражения, достаточными для развития возбуждения, описывается кривой «сила — длительность» (рис. 3).

Рис. 3. Кривая «сила-длительность» (соотношения силы и длительности воздействия, необходимые для возникновения возбуждения). Ниже и слева от кривой — соотношения силы и длительности раздражителя, недостаточные для возбуждения, выше и справа — достаточные

Специально для характеристики порога силы электрического тока, широко используемого в качестве раздражителя при исследовании ответных реакций тканей, введено понятие «реобаза». Реобаза — это минимальная сила электрического тока, необходимая для инициирования возбуждения, при длительном его воздействии на клетку или ткань. Дальнейшее удлинение раздражения практически не влияет на величину пороговой силы.

Порог времени раздражения — минимальное время, в течении которого должен действовать раздражитель пороговой силы, чтобы вызвать возбуждение.

Между возбудимостью и величиной порога времени также имеется обратная зависимость. Чем на меньшие по времени пороговые воздействия ткань реагирует развитием возбуждения, тем се возбудимость выше. Величина порогового времени для возбудимой ткани зависит от силы воздействия раздражителя, что видно на рис. 3.

Хронаксия - минимальное время, в течение которого должен действовать раздражитель силой, равной двум реобазам, чтобы вызвать возбуждение (см. рис. 3). Этот показатель возбудимости также применяется для случая использования в качестве раздражителя электрического тока. Хронаксия нервных клеток и волокон скелетных мышц составляет десятитысячные доли секунды, а гладких мышц — в десятки раз больше. Хронаксия как показатель возбудимости используется для тестирования состояния и функциональных возможностей скелетных мышц и нервных волокон здорового человека (в частности, в спортивной медицине). Определение хронаксии имеет ценность для диагностики ряда заболеваний мышц и нервов, так как при этом возбудимость последних обычно снижается и хронаксия увеличивается.

Минимальный градиент (крутизна ) нарастания силы раздражителя во времени. Это минимальная скорость увеличения силы раздражителя во времени, достаточная для инициирования возбуждения. Если сила раздражителя увеличивается очень медленно, то ткань приспосабливается к его действию и не отвечает возбуждением. Такое приспособление возбудимой ткани к медленно увеличивающейся силе раздражителя называют аккомодацией. Чем больше минимальный градиент, тем ниже возбудимость ткани и тем более выражена в ней способность к аккомодации. Практическая значимость этого показателя заключается в том, что при проведении различных медицинских манипуляций у человека в ряде случаев можно избежать развития сильных болевых ощущений и шоковых состояний, медленно изменяя скорость нарастания силы и время воздействия.

Лабильность — функциональная подвижность возбудимой ткани. Лабильность определяется скоростью элементарных физико-химических превращений, лежащих в основе одиночного цикла возбуждения. Мерой лабильности является максимальное число циклов (волн) возбуждения, которые может генерировать ткань в единицу времени. Количественно величина лабильности определяется длительностью протекания одиночного никла возбуждения и длительностью фазы абсолютной рефрактерности. Так, вставочные нейроны спинного мозга могут воспроизводить более 500 циклов возбуждения или нервных импульсов в секунду. У них высокая лабильность. Мотонейроны, контролирующие сокращение мышц, характеризуются более низкой лабильностью и способны генерировать не более 100 нервных импульсов в секунду.

Разность потенциалов (ΔЕ) между потенциалом покоя на мембране (Е 0) и критическим уровнем деполяризации мембраны (Е к). ΔЕ = (Е 0 - Е к) является одним из важнейших показателей возбудимости клетки. Этот показатель отражает физическую сущность порога силы раздражителя. Раздражитель является пороговым в случае, когда он способен сместить такой уровень поляризации мембраны до Е к, при достижении которого на мембране развивается процесс возбуждения. Чем меньше значение ΔЕ, тем выше возбудимость клетки и тем на более слабые воздействия она будет реагировать возбуждением. Однако показатель ΔЕ мало доступен для измерения в обычных условиях. Физиологическая значимость этого показателя будет рассмотрена при изучении природы мембранных потенциалов.

Законы реагирования возбудимых тканей на раздражение

Характер реагирования возбудимых тканей на действие раздражителей в классической принято описывать законами раздражения.

Закон силы раздражения утверждает, что при увеличении силы надпорогового раздражителя до определенного предела возрастает и величина ответной реакции. Этот закон применим для ответной реакции сокращения целостной скелетной мышцы и суммарной электрической ответной реакции нервных стволов, включающих множество волокон, обладающих разной возбудимостью. Так, сила сокращения мышцы возрастает при увеличении силы воздействующего на нее раздражителя.

Для тех же возбудимых структур применимы закон длительности раздражения и закон градиента раздражения. Закон длительности раздражения утверждает, что чем больше продолжительность надпорогового раздражения, тем больше величина ответной реакции. Естественно, что возрастание ответа идет только до определенного предела. Закон градиента раздражения - чем больше градиент нарастания силы раздражителя во времени, тем больше (до определенного предела) величина ответной реакции.

Закон все или ничего утверждает, что при действии подпороговых раздражителей возбуждение не возникает, а при действии порогового и надпороговых раздражителей величина ответной реакции, обусловленной возбуждением, остается постоянной. Следовательно, уже на пороговый раздражитель, возбудимая структура отвечает максимально возможной для данного функционального состояния реакцией. Этому закону подчиняются одиночное нервное волокно, на мембране которого в ответ на действие порогового и надпорогового раздражителей генерируется потенциал действия одинаковых амплитуды и длительности. Закону «все или ничего» подчиняется реакция одиночного волокна скелетной мышцы, которое отвечает одинаковыми по амплитуде и продолжительности потенциалами действия и одинаковой силой сокращения как на пороговый, гак и на разные по силе надпороговые раздражители. Этому закону подчиняется также характер сокращения целостной мышцы желудочков сердца и предсердий.

Закон полярного действия электрического тока (Пфлюгера) постулирует, что при действии на возбудимые клетки постоянного электрического тока в момент замыкания цепи возбуждение возникает в месте приложения катода, а при размыкании — в месте контакта с анодом. Само по себе длительное действие постоянного тока на возбудимые клетки и ткани не вызывает в них возбуждения. Невозможность инициирования возбуждения таким током можно рассматривать как следствие их аккомодации к неизменяющемуся во времени раздражителю с нулевой крутизной нарастания. Однако поскольку клеток поляризованы и на их внутренней поверхности имеется избыток отрицательных зарядов, а на внешней — положительных, то в области приложения к ткани анода (положительно заряженного электрода) под действием электрического поля часть положительных зарядов, представленных катионами К+ будет перемещаться внутрь клетки и их концентрация на внешней поверхности станет меньше. Это приведет к понижению возбудимости клеток и участка ткани под анодом. Обратные явления будут наблюдаться под катодом.

Воздействие на живые ткани электрическим током и регистрация биоэлектрических токов часто используются в медицинской практике для диагностики и лечения и особенно при проведении экспериментальных физиологических исследований. Это вызвано тем, что величины биотоков отражают функциональное состояние тканей. Электрический ток обладает лечебным действием, легко дозируем по величине и времени воздействия, и его эффекты могут наблюдаться при силах воздействия, близких к естественным величинам биотоков в организме.

Лабильность (от лат. labilis – неустойчивый, скользящий) – физиологический термин, обозначающий функциональную подвижность, быстроту, с которой прогрессируют элементарные виды физиологических процессов в среде возбудимой ткани (нервной и мышечной).

Лабильность можно охарактеризовать как скорость перехода в состояние возбуждения из состояния покоя и выхода из возбужденного состояния. В одних тканях и клетках такое возбуждение протекает быстро, в других же – медленно.

Определяется лабильность как максимальное количество импульсов, которые функциональная структура или нервная клетка способны передать без искажения в единицу времени. В медицине и биологии этим термином обозначают неустойчивость, подвижность, изменчивость психических процессов и физиологического состояния – температуры тела, пульса, давления и т. д. В психологии лабильность является свойством нервной системы, характеризующим скорость появления и прекращения нервных процессов.

Термин «лабильность» в 1886 году предложил русский физиолог Введенский Н.Е., считавший мерой лабильности максимальную частоту раздражения ткани, которую она воспроизводит без преобразования ритма. Он сделал неоспоримым фактом различие в количестве реакции ответа на устойчивый ряд раздражителей. Ему удалость также выявить низкую утомляемость нерва, что объясняется малой затратой его энергии на раздражитель. Снижению энергетической затраты на реакцию, возникающую от нервного возбуждения способствует высокая лабильность.

Собственно лабильность отражает время, на протяжении которого возбудимая ткань восстанавливает свою работоспособность после каждого цикла возбуждения. Самая высокая лабильность присуща отросткам нервных клеток – аксонов, способных за секунду воспроизвести порядка 500–1000 импульсов. Менее лабильны синапсы – периферические и центральные зоны контакта. К примеру, на скелетную мышцу двигательное нервное окончание может передать за секунду не более 100–150 импульсов. При угнетении жизнедеятельности клеток и тканей (наркотическими средствами, холодом и др.) лабильность уменьшается, поскольку происходит замедление процессов восстановления и увеличение рефрактерного периода – времени, за которое возбудимость снижается и восстанавливается до начального уровня. Лабильность - непостоянная величина, под действием частых раздражений сокращается рефрактерный период, а значит, увеличивается лабильность.

Лабильность само психологическое состояние человека характеризует как изменчивое и крайне неустойчивое. Эта особенность присуща лицам творческих профессий – актерам, певцам, писателям, художникам. Все чувства они переживают очень глубоко, однако продолжительность переживаний не столь велика.

Высокая лабильность в психологии характеризует темперамент холерического типа, которому свойственна частая смена настроения и повышенная возбудимость. В этом есть и плюсы, поскольку в скором времени от не остается даже следа.

Термин интеллектуальная лабильность часто применяется по отношению к сотрудникам и может выявляться с помощью тестов.

Термин применяется по отношению к подвижности и неустойчивости психических процессов, а также физиологических параметров организма – температуре тела, давлению и др. Для нервной системы главным показателем является соотношение показателей явлений торможения и возбудимости. Возбудимость – это реакция живой ткани на внешний раздражитель. Лабильность зависит от временных показателей восстановления работоспособности ткани в завершении серии новых возбуждений.

В нашей стране этот термин разработан трудами русского физиолога Н.Е. Введенского в 1886 г. Профессором Н.Е Введенским сделал неоспоримым фактом такое явление, как различие в количестве ответной реакции на устойчивый ряд раздражителей. Также ему удалость выяснить низкую утомляемость нерва. Объясняется это малой затратой энергии нерва на раздражитель. Высокая лабильность также помогает снизить затраты энергии на реакцию от нервного возбуждения. Свойства подвижности изучал лабораторными способами И.П. Павлов. В это же время было вынесено предложение использовать ряд методов для диагностики подвижности. Эти методы предоставляли возможность установить быстроту выявления скорости и проблем в смене нервных действий на обратные по знаку и значению действия и процессы.

Центростремительное и центробежное направление полученного возбуждения сказывается в виде появления реакции на возбуждение в областях нервных центров или рецепторов. Реакция на возбуждение может охватить всего одно нервное волокно, не касаясь других волокон. Быстрота возникновения реакции напрямую зависит от таких параметров, как диаметр волокна и особенности состава оболочки волокна. В толстом волокне реакция протекает быстрее.

Быстрота реакции нервной деятельности напрямую связана с той скоростью, с которой протекает реакция нервной системы, возникающая при различных сигналах внешней среды. Степень развития лабильности нервных процессов – это диагностика сигнала в единичном случае, не поддавшейся внешней дифференциации. Подвижностью называют на дифференциальную серию сигналов, получившую нужную ответную реакцию. Подвижность различается по видам. Она может быть знаковой (различается по типам дорожных сигналов), цветовые (обычно в пример приводится цветовая кодировка сигналов светофора) и смысловые – набор слов и логических заключений независимо от их форм изложения). Раздражители также можно дифференцировать. Они могут восприниматься естественным образом при помощи органов человека – обоняния, носа, зрения, слуха и т.д. Такие раздражители можно отнести к адекватным. Неадекватные раздражители поддаются восприятию органов чувств только если раздражитель был силён и длился долгое время.