Как микробы попадают в воздух. « Микробы могут годами летать вокруг света

Микроорганизмы полностью заселили нашу планету. Они есть везде – в воде, на суше, в воздухе, им не страшны высокие и низкие температуры, не критично наличие или отсутствие кислорода или света, высокие концентрации солей или кислот. Бактерии выживают везде. И все же если вода и почва как среда обитания являются наиболее благоприятными, то вирусы и бактерии в воздухе живут очень недолго.

Как бактерии оказываются в воздухе

Если в почве и воде бактерии обитают, то в воздушном пространстве они присутствуют. Эта среда не способна обеспечить нормальную жизнедеятельность микроорганизмам, так как не содержит питательных веществ, а УФ-излучение Солнца зачастую приводит к гибели бактерий.

Движением воздуха с поверхности поднимаются пыль и микроскопические частички вещества вместе с содержащимися на них микроорганизмами – именно таким образом бактерии оказываются в воздухе. Они перемещаются воздушными потоками и со временем оседают на землю.

Так как микробы поднимаются с поверхности, то бактериальная обсемененность воздушного пространства как качественно, так и количественно напрямую зависит от микробиологической насыщенности поверхностного слоя.

Чем выше от поверхности планеты расположен воздушный слой, тем меньше в нем содержится микроорганизмов. Но они есть. Бактерии в воздушном пространстве обнаружили даже в стратосфере, на высоте более 23 км от поверхности, где воздушный слой чрезвычайно разрежен, а воздействие космических лучей весьма жесткое и не сдерживается атмосферой.

Бактериальная проба на высоте 500 м над поверхностью в большом городе количественно в тысячи раз выше, чем проба воздуха в высокогорном районе или над водной поверхностью вдали от берегов.

Какие бактерии могут быть в воздухе

Так как в воздушном пространстве бактерии не живут, а лишь переносятся потоками ветра, говорить о каких-то типичных представителях бактерий не приходится.

В воздухе могут оказаться самые различные виды бактерий, которые по-разному реагируют на пребывание в такой неблагоприятной для них среде:

  • не выдерживают обезвоживания и быстро погибают;
  • переходят в фазу спор и месяцами пережидают критические для жизнедеятельности условия.

Для человека существенным является наличие в воздухе патогенных микроорганизмов, среди которых:

  • чумная палочка (возбудитель бубонной и септической чумы, чумной пневмонии);
  • бактерии Борде-Жангу (возбудитель коклюша);
  • палочка Коха (возбудитель туберкулеза);
  • холерный вибрион (возбудитель холеры).

Почти все из перечисленных бактерий, попадая в воздушную среду, достаточно быстро погибают, однако есть и такие, как палочка Коха (туберкулез), кислотоустойчивая спорообразующая бактерия, которая даже в сухой пыли остается жизнеспособной до 3 месяцев.

Наличие в воздушной среде возбудителей инфекционных заболеваний увеличивает риск заражения отдельного человека, а также возникновения эпидемии, когда заражению подвергается значительная группа людей.

Бактерии могут передаваться не только с сухими частицами по ветру

Когда больной кашляет или чихает, в воздух попадают выделяемые им капельки мокроты, содержащие большое количество бактерий-возбудителей заболевания. При попадании на здорового человека капельки мокроты, содержащие патогенные бактерии, с большой вероятностью вызовут инфицирование. Данный способ передачи инфекционных заболеваний называют воздушно-капельным.

К патогенным бактериям, вызывающим инфекционные заболевания и передающимся практически только воздушным путем, относятся:

  • грипп;
  • скарлатина;
  • оспа;
  • дифтерия;
  • корь;
  • туберкулез.

Различие бактериального состава воздуха

Закономерно, что воздух в различных местах имеет свои особенности, зависящие от многих факторов. Если это закрытое помещение, то большое значение на уровень обсемененности пространства бактериями оказывают следующие факторы:

  • специфика использования помещения – это может быть спальня, рабочая зона, фармлаборатория и т.д.;
  • проведение проветриваний;
  • соблюдение санитарно-гигиенических норм в помещении;
  • плановое проведение мероприятий по очистке воздуха помещения от бактерий.

Бактериальная обсемененность в местах, связанных с длительным пребыванием больших масс людей, таких как вокзалы, станции и вагоны метро, больницы, детские сады и т.д., характеризуется наиболее высокими показателями.

Как оценка уровня количества и состава бактерий используются санитарно-гигиенические нормы, применимые для любых закрытых помещений:

  • квартир;
  • рабочих зон;
  • медицинских стационаров;
  • любых мест общественного пользования.

Для воздуха в закрытых помещениях санитарно-показательными микроорганизмами принято считать зеленящие стрептококки и стафилококки, а наличие в пробе гемолитических стрептококков указывает на угрозу возникновения эпидемии.

Количественный и качественный бактериологический состав воздушных масс как под открытым небом, так и в закрытых помещениях (квартирах, рабочих зонах и др.) не является статической величиной, а изменяется в зависимости от времени года, с минимальными значениями зимой и максимальными показателями летом.

Чистоту воздуха оценивают согласно СанПин 2.1.3.1375-03 по определяемому в объеме воздуха количеству микроорганизмов, чаще всего проба привязывается к 1 м 3 исследуемого воздуха.

Методы очищения воздуха от микробов

Согласно проведенным исследованиям, воздух в квартирах или рабочих зонах в разы грязнее и токсичнее, чем на улице. Это связано с наличием в воздухе, помимо микробов, вирусов, плесени и спор грибков, домашней или промышленной пыли, шерсти домашних животных, табачного дыма, летучих химических соединений (мебель, напольные покрытия, бытовая химия и т.п.) и многого другого.

Для очистки воздуха от бактерий можно применять различные методы, но в первую очередь необходимо избавиться от грязи и пыли – именно с ними микроорганизмы попадают в воздух .

Влажная уборка и пылесос как методы очистки воздуха

Домашняя и производственная пыль на организм человека воздействует как сильный аллерген; при малейшем движении воздух она перемещается с места на место, а вместе с ней и бактерии.

Самый надежный способ избавиться от пыли и содержащихся в ней бактерий – провести влажную уборку с применением дезинфицирующих средств. Причем эту процедуру необходимо проводить регулярно.

Удалить пыль с поверхностей можно пылесосом – они довольно хорошо очищают полы и напольные покрытия. Однако нет гарантии полного удаления слежавшейся пыли, большего уровня чистоты позволяет добиться современный моющий пылесос с НЕРА-фильтрами.

Ковровые покрытия, лежащие в квартирах, следует выносить на улицу и выбивать – это давно известный способ избавиться от накапливающейся пыли.

Проветривание для очищения воздуха

Действенным методом очистки воздуха от пыли и бактерий как в квартирах, так и в рабочих зонах является проветривание помещения. Наиболее эффективно его проводить рано утром и поздно вечером (в домашних условиях – перед сном).

Воздухоочистители

Эти приборы предназначены для очистки воздуха в жилых помещениях и рабочих зонах от примесей, загрязняющих воздух. Применяется метод фильтрации, когда содержащаяся в воздухе пыль, вредные вещества и бактерии остаются на фильтре.

Качество очистки воздуха напрямую зависит от типа используемого фильтра.

Фильтры воздухоочистителя подразделяют:

  • механические – удаляют из воздуха лишь крупные по размеру загрязнения;
  • угольные – достаточно эффективны, но не могут использоваться для очистки воздуха при высокой влажности;
  • НЕРА-фильтры – современные высокоэффективные фильтры; задерживают все примеси, включая бактерии и их споры; как дополнительный плюс – увлажняют воздух в помещении.

Увлажнители

Помимо чистоты, воздух должен обладать определенным уровнем влажности – при сухом воздухе в жилых помещениях и рабочих зонах влага с кожных покровов будет насыщать воздух. Что закономерно привет к пересыханию кожи и слизистых оболочек, образованию микротрещин, что снизит противобактериальную и противовирусную устойчивость организма.

Оптимальным уровнем влажности воздуха в помещении является интервал 35-50%:

  • для человека – наиболее комфортная влажность;
  • для бактерий – зона угнетения развития.

Для поддержания в рабочих зонах и местах проживания оптимального уровня влажности используют увлажнители.

В зависимости от типа увлажнители бывают:

  • ультразвуковые;
  • традиционные;
  • прямого распыления;
  • парогенераторы.

Чтобы решить, какой именно увлажнитель использовать в каждом конкретном случае, следует знать их достоинства и недостатки.

Краткий обзор характеристик увлажнителей

1.Ультразвуковые увлажнители.

Плюсы: экономичные по стоимости и энергозатратам, при работе создают незначительный шум (вентилятор).

Минусы: использование дистиллята; нет автоматического долива воды; угроза развития в емкости микрофлоры (чаще всего – легионелл) с последующим выбросом ее в воздух, необходимость регулярной дезинфекции емкости; короткий срок службы.

2 .Традиционные – увлажнители холодного испарения.

Плюсы: низкая стоимость, очищает воздух помещения, используется водопроводная вода.

Минусы: работает шумно, требует регулярной чистки и дезинфекции, опасность развития патогенной микрофлоры и попадания ее в воздух помещения, высокий износ.

3. Увлажнители прямого распыления.

Оборудование высокого класса, практически лишенное недостатков. Из минусов можно отметить высокую стоимость и необходимость профессионального монтажа.

4. Увлажнители – генераторы пара.

Плюсы: средняя стоимость, дезинфекция воды кипячением.

Минусы: очень энергоемки, большие габариты, шумные в работе, требуют частого обслуживания, прямой выход пара является потенциальной опасностью.

Увлажнители любого типа решают задачу очистки воздуха от пыли и бактерий в рабочей зоне или жилом помещении, следует только определить, сколько и какие именно увлажнители являются оптимальными в конкретном случае.

Роль зеленых насаждений

Чем чище воздух в местах общественного и личного пользования, тем меньше он содержит различных бактерий, в том числе и патогенных.

Значение зеленых насаждений при очистке воздуха невозможно переоценить – растения осаждают пыль, а выделяемые ими фитонциды убивают микробов.

Растения в квартире

Комнатные растения в жилых и рабочих зонах выполняют функцию биологического фильтра – поглощают вредные вещества из воздуха, собирают пыль на листьях, увлажняют воздух, выделяют кислород и фитонциды, убивающие патогенные бактерии.

Распространенные растения-антисептики для домашней очистки воздуха:

  • герань;
  • алое;
  • бегония;
  • мирт;
  • розмарин.

Средний радиус антибактериального воздействия растения составляет около 3 м, кроме этого, растения дезодорируют воздух и обладают тонизирующим эффектом.

Уличные растения очищают воздух

Деревья и кустарники под открытым небом постоянно проводят очистку воздушного пространства как от механических примесей и токсинов, так и от болезнетворных микроорганизмов. Растения выделяют летучие фитонциды, убивающие бактерии.

Jpg" alt="девушка на фоне природы" width="400" height="225" srcset="" data-srcset="https://probakterii.ru/wp-content/uploads/2015/10/bakterii-coli-v-moche2-400x225..jpg 600w" sizes="(max-width: 400px) 100vw, 400px">

Как уже было сказано, на состав сообществ микроорганизмов поверхностного снега могут влиять несколько факторов, один из которых - эоловый перенос материала из близлежащих биотопов. Сотни миллионов тонн пыли, содержащей микроорганизмы, органические кислоты и неорганические соли, ежегодно перемещаются между континентами [ 67 ]. Многочисленные биотопы на поверхности Земли могут служить источником бактерий в атмосфере: поверхность почвы, растений, водная поверхность и, наконец, антропогенные объекты [ 68 ].

Микробные клетки могут пребывать в атмосфере в течение долгого времени сохраняя жизнеспособность и переноситься на огромные расстояния [ 69 ]. Различные факторы окружающей среды, такие как УФ радиация, окислительный стресс, обезвоживание и недостаток питательных веществ, оказывают влияние на микроорганизмы в атмосфере [ 70 ]. Численность микроорганизмов в атмосфере зависит от множества факторов, таких как время года, температура, топология местности, потоки тепла от земной поверхности, ветер и антропогенный фактор [ 71 ]. По некоторым оценкам, численность микроорганизмов в атмосфере может составлять от 100 до 100000 бактерий в мл воздуха [ 72 , ].

Отдельный вопрос, которые возникает при изучении разнообразия микроорганизмов в атмосфере - это в каком метаболическом состоянии они находятся, и могут ли они принимать участие в атмосферных процессах [ 74 ]. Способность бактерий жить и размножаться на частицах пыли в атмосфере была показана еще в 1979 году [ 75 ]. Жизнеспособные бактерии были обнаружены на высоте до 60-70 км, где температура воздуха достигает -100*C [ 76 , ]. Было показано, что атмосферные бактерии могут влиять на химический состав осадков [ 78 ] и даже вызывать их образование, способствуя конденсации воды и льда [ 79 ]. Самым известным примером бактерии, которая способствует образованию кристаллов льда на поверхности клетки это Pseudomonas syringae [ 80 ]. На внешней мембране клеток P. syringae находятся белки, которые связывают молекулы воды из атмосферы и упорядочивают их структуру при замерзании, что приводит к образованию регулярных кристаллов льда.

Антарктический континент изолирован от других континентов антарктическим циркумполярным воздушным течением , которое практически не позволяет перемешиваться воздушным потокам над Антарктикой и более северными районами [ 81 ]. Другим важным фактором, ограничивающим транспорт веществ по воздуху к территории Антарктиды, являются стоковые ветра , которые снижают количество заносимого на побережье органического материала [ 82 ]. Стоковые ветра возникают вследствие охлаждения слоя воздуха у поверхности ледника, который под действием силы тяжести стекает вниз по куполообразному склону Антарктического континента. Основными источниками пыли, оседающей на территории Антарктики и Южного океана, являются территория Австралии, Южной Америки, Южной Африки, а также территории Северного полушария. Южно-американские потоки оседают главным образом в Атлантико-Индийском секторе Антарктики, австралийские - в секторе Тихого океана [ 83 ].

Несколько исследований были посвящены описанию разнообразия микроорганизмов в воздухе над Антарктикой. Микробиологическими методами были обнаружены споры мхов и грибов, пыльца, водоросли, бактерии и даже вирусы [ 84 ]. Молекулярно-генетическими методами удалось детектировать представителей цианобактерий , диатомовых водорослей и актиномицетов в воздухе над Антарктическим полуостровом [ 85 ]. Как отмечают авторы, ближайшие гомологи многих из них были ранее обнаружены в других холодных местах обитания, в том числе на территории Антарктики. С помощью методов высокопроизводительного секвенирования удалось описать состав сообщества микроорганизмов в воздухе над Сухой Долиной недалеко от американской исследовательской станции МакМердо [ 86 ]. Самым часто встречающимся филумом бактерий оказались Firmicutes , многие представители которых имели ближайших гомологов среди термофильных бактерий . Авторы предположили, что наибольший вклад в состав бактериального сообщества атмосферы над Сухими Долинами вносят , который находится в 100 км от места отбора образцов. Возможно, консервации термофильных бактерий филума Firmicutes в атмосфере способствовало то, что многие из них способны образовывать споры при неблагоприятных условиях. В остальном, состав сообщества бактерий воздуха над Сухими Долинами был схож с бактериальным составом аэрозолей над другими континентами, формируя таким образом специфическую экосистему бактерий, способных к транспортировке на дальние расстояния и обладающих повышенной устойчивостью к неблагоприятным условиям окружающей среды [

На 111-м собрании Американского общества микробиологии (ASM) в Новом Орлеане на этой неделе Alexander Michaud из Государственного университета штата Монтана в Bozeman представил последние результаты своей команды в новой развивающейся области «биоосаждение», в которой ученые исследуют степень влияния бактерий и других микроорганизмов на погодные явления.

В своем выступлении во вторник Michaud говорил о том, как он и его группа обнаружили высокую концентрацию бактерий в центре градин. Центр градины является первой частью открытия, «зародышем»:

Michaud сказал, что молекулам воды необходимо «ядро», вокруг которого они будут скапливаться и это приведет к осадкам в виде дождя, снега и града.

«Существует все больше доказательств того, что этими ядрами могут быть бактерии или другие биологические частицы », добавил Michaud.

Он и его команда рассмотрели градины более, чем 5 см в диаметре, которые упали в кампусе университета во время града в июне 2010 года.

Они проанализировали талые воды из четырех слоев в каждой градине и обнаружили, что внутреннее ядро, содержит наибольшее количество живых бактерий, о чем свидетельствует их возможность расти.

Термин «биоосаждение» был впервые введен в начале 1980-х David Sands, профессором и фитопатологом в Университете штата Монтана. В настоящее время это развивающаяся область, где ученые исследуют, как формируются ледяные облака, и как бактерии и другие микроорганизмы способствуют этому, образуя ядра, частицы, вокруг которых могут формироваться кристаллы льда.

Как только температура в облаках становится больше, чем -40 градусов Цельсия, лед спонтанно не образуется:

«Аэрозоли в облаках играют ключевую роль в процессах, ведущих к образованию осадков ».

Christner пояснил, что в то время, как различные типы частиц могут служить ядрами для образования льда, наиболее активным и естественным из них является биологический, способный катализировать образование льда на уровне около -2 градусов по Цельсию.

Наиболее хорошо изученным является Pseudomonas syringae, которые можно увидеть в качестве пятен на томатах после заморозков.

«В штаммах P. syringae есть ген, кодирующий белок в их внешней мембране, который связывает молекулы воды в упорядоченное расположение, обеспечивая эффективный шаблон, который усиливает образование кристаллов льда », пояснил Christner.

С помощью компьютерной модели для имитации условий в аэрозольных облаках, исследователи выяснили, что высокая концентрация биологических ядер может влиять на многие события в атмосфере Земли, такие как размер и концентрация ледяных кристаллов в облаках, облачность, количество дождя, снега, града, который падает на землю, и даже помогает изоляции от солнечного излучения.

Учитывая объем ядер в атмосфере и температуру, при которой они функционируют, Christner сделал вывод, что «биологические ядра могут играть роль в гидрологическом цикле Земли и радиационном балансе».

Бактерии — самая древняя группа организмов из ныне существующих на Земле. Первые бактерии появились, вероятно, более 3,5 млрд лет назад и на протяжении почти миллиарда лет были единственными живыми существами на нашей планете. Поскольку это были первые представители живой природы, их тело имело примитивное строение.

Со временем их строение усложнилось, но и поныне бактерии считаются наиболее примитивными одноклеточными организмами. Интересно, что некоторые бактерии и сейчас ещё сохранили примитивные черты своих древних предков. Это наблюдается у бактерий, обитающих в горячих серных источниках и бескислородных илах на дне водоёмов.

Большинство бактерий бесцветно. Только немногие окрашены в пурпурный или в зелёный цвет. Но колонии многих бактерий имеют яркую окраску, которая обусловливается выделением окрашенного вещества в окружающую среду или пигментированием клеток.

Первооткрывателем мира бактерий был Антоний Левенгук — голландский естествоиспытатель 17 века, впервые создавший совершенную лупу-микроскоп, увеличивающую предметы в 160-270 раз.

Бактерии относят к прокариотам и выделяют в отдельное царство — Бактерии.

Форма тела

Бактерии — многочисленные и разнообразные организмы. Они различаются по форме.

Название бактерии Форма бактерии Изображение бактерии
Кокки Шарообразная
Бацилла Палочковидная
Вибрион Изогнутая в виде запятой
Спирилла Спиралевидная
Стрептококки Цепочка из кокков
Стафилококки Грозди кокков
Диплококки Две круглые бактерии, заключённые в одной слизистой капсуле

Способы передвижения

Среди бактерий есть подвижные и неподвижные формы. Подвижные передвигаются за счёт волнообразных сокращений или при помощи жгутиков (скрученные винтообразные нити), которые состоят из особого белка флагеллина. Жгутиков может быть один или несколько. Располагаются они у одних бактерий на одном конце клетки, у других — на двух или по всей поверхности.

Но движение присуще и многим иным бактериям, у которых жгутики отсутствуют. Так, бактерии, покрытые снаружи слизью, способны к скользящему движению.

У некоторых лишённых жгутиков водных и почвенных бактерий в цитоплазме имеются газовые вакуоли. В клетке может быть 40-60 вакуолей. Каждая из них заполнена газом (предположительно — азотом). Регулируя количество газа в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на её поверхность, а почвенные бактерии — передвигаться в капиллярах почвы.

Место обитания

В силу простоты организации и неприхотливости бактерии широко распространены в природе. Бактерии обнаружены везде: в капле даже самой чистой родниковой воды, в крупинках почвы, в воздухе, на скалах, в полярных снегах, песках пустынь, на дне океана, в добытой с огромной глубины нефти и даже в воде горячих источников с температурой около 80ºС. Обитают они на растениях, плодах, у различных животных и у человека в кишечнике, ротовой полости, на конечностях, на поверхности тела.

Бактерии — самые мелкие и самые многочисленные живые существа. Благодаря малым размерам они легко проникают в любые трещины, щели, поры. Очень выносливы и приспособлены к различным условиям существования. Переносят высушивание, сильные холода, нагревание до 90ºС, не теряя при этом жизнеспособность.

Практически нет места на Земле, где не встречались бы бактерии, но в разных количествах. Условия жизни бактерий разнообразны. Одним из них необходим кислород воздуха, другие в нём не нуждаются и способны жить в бескислородной среде.

В воздухе: бактерии поднимаются в верхние слои атмосферы до 30 км. и больше.

Особенно много их в почве. В 1 г. почвы могут содержаться сотни миллионов бактерий.

В воде: в поверхностных слоях воды открытых водоёмов. Полезные водные бактерии минерализуют органические остатки.

В живых организмах: болезнетворные бактерии попадают в организм из внешней среды, но лишь в благоприятных условиях вызываю заболевания. Симбиотические живут в органах пищеварения, помогая расщеплять и усваивать пищу, синтезируют витамины.

Внешнее строение

Клетка бактерии одета особой плотной оболочкой — клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии напоминает оболочку растительной клетки. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи — капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Капсула — не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она предохраняет бактерию от высыхания.

На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии. С помощью жгутиков и ворсинок бактерии передвигаются.

Внутреннее строение

Внутри клетки бактерии находится густая неподвижная цитоплазма. Она имеет слоистое строение, вакуолей нет, поэтому различные белки (ферменты) и запасные питательные вещества размещаются в самом веществе цитоплазмы. Клетки бактерий не имеют ядра. В центральной части их клетки сконцентрировано вещество, несущее наследственную информации. Бактерии, — нуклеиновая кислота — ДНК. Но это вещество не оформлено в ядро.

Внутренняя организация бактериальной клетки сложна и имеет свои специфические особенности. Цитоплазма отделяется от клеточной стенки цитоплазматической мембраной. В цитоплазме различают основное вещество, или матрикс, рибосомы и небольшое количество мембранных структур, выполняющих самые различные функции (аналоги митохондрий, эндоплазматической сети, аппарата Гольджи). В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Гранулы могут состоять из соединений, которые служат источником энергии и углерода. В бактериальной клетке встречаются и капельки жира.

В центральной части клетки локализовано ядерное вещество — ДНК, не отграниченная от цитоплазмы мембраной. Это аналог ядра — нуклеоид. Нуклеоид не обладает мембраной, ядрышком и набором хромосом.

Способы питания

У бактерий наблюдаются разные способы питания. Среди них есть автотрофы и гетеротрофы. Автотрофы — организмы, способные самостоятельно образовывать органические вещества для своего питания.

Растения нуждаются в азоте, но сами усваивают азот воздуха не могут. Некоторые бактерии соединяют содержащиеся в воздухе молекулы азота с другими молекулами, в результате чего получаются вещества, доступные для растений.

Эти бактерии поселяются в клетках молодых корней, что приводит к образованию на корнях утолщений, называемых клубеньками. Такие клубеньки образуются на корнях растений семейства бобовых и некоторых других растений.

Корни дают бактериям углеводы, а бактерии корням — такие содержащие азот вещества, которые могут быть усвоены растением. Их сожительство взаимовыгодно.

Корни растений выделяют много органических веществ (сахара, аминокислоты и другие), которыми питаются бактерии. Поэтому в слое почвы, окружающем корни, поселяется особенно много бактерий. Эти бактерии превращают отмершие остатки растений в доступные для растения вещества. Этот слой почвы называют ризосферой.

Существует несколько гипотез о проникновении клубеньковых бактерий в ткани корня:

  • через повреждения эпидермальной и коровой ткани;
  • через корневые волоски;
  • только через молодую клеточную оболочку;
  • благодаря бактериям-спутникам, продуцирующим пектинолитические ферменты;
  • благодаря стимуляции синтеза В-индолилуксусной кислоты из триптофана, всегда имеющегося в корневых выделениях растений.

Процесс внедрения клубеньковых бактерий в ткань корня состоит из двух фаз:

  • инфицирование корневых волосков;
  • процесс образования клубеньков.

В большинстве случаев внедрившаяся клетка, активно размножается, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения. Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина.

Наполняющиеся быстро размножающимися клетками клубеньковых бактерий растительные клетки начинают усиленно делиться. Связь молодого клубенька с корнем бобового растения осуществляется благодаря сосудисто-волокнистым пучкам. В период функционирования клубеньки обычно плотные. К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.

Бактерии клубеньков создают десятки и сотни килограммов азотных удобрений на гектаре почвы.

Обмен веществ

Бактерии отличаются друг от друга обменом веществ. У одних он идёт при участии кислорода, у других — без его участия.

Большинство бактерий питается готовыми органическими веществами. Лишь некоторые из них (сине-зелёные, или цианобактерии), способны создавать органические вещества из неорганических. Они сыграли важную роль в накоплении кислорода в атмосфере Земли.

Бактерии впитывают вещества извне, разрывают их молекулы на части, из этих частей собирают свою оболочку и пополняют своё содержимое (так они растут), а ненужные молекулы выбрасывают наружу. Оболочка и мембрана бактерии позволяет ей впитывать только нужные вещества.

Если бы оболочка и мембрана бактерии были полностью непроницаемыми, в клетку не попали бы никакие вещества. Если бы они были проницаемыми для всех веществ, содержимое клетки перемешалось бы со средой — раствором, в которой обитает бактерия. Для выживания бактерии необходима оболочка, которая нужные вещества пропускает, а ненужные — нет.

Бактерия поглощает находящиеся близ неё питательные вещества. Что происходит потом? Если она может самостоятельно передвигаться (двигая жгутик или выталкивая назад слизь), то она перемещается, пока не найдёт необходимые вещества.

Если она двигаться не может, то ждёт, пока диффузия (способность молекул одного вещества проникать в гущу молекул другого вещества) не принесёт к ней необходимые молекулы.

Бактерии в совокупности с другими группами микроорганизмов выполняют огромную химическую работу. Превращая различные соединения, они получают необходимую для их жизнедеятельности энергию и питательные вещества. Процессы обмена веществ, способы добывания энергии и потребности в материалах для построения веществ своего тела у бактерий разнообразны.

Другие бактерии все потребности в углероде, необходимом для синтеза органических веществ тела, удовлетворяют за счёт неорганических соединений. Они называются автотрофами. Автотрофные бактерии способны синтезировать органические вещества из неорганических. Среди них различают:

Хемосинтез

Использование лучистой энергии — важнейший, но не единственный путь создания органического вещества из углекислого газа и воды. Известны бактерии, которые в качестве источника энергии для такого синтеза используют не солнечный свет, а энергию химических связей, происходящих в клетках организмов при окислении некоторых неорганических соединений — сероводорода, серы, аммиака, водорода, азотной кислоты, закисных соединений железа и марганца. Образованное с использованием этой химической энергии органическое вещество они используют для построения клеток своего тела. Поэтому такой процесс называют хемосинтезом.

Важнейшую группу хемосинтезирующих микроорганизмов составляют нитрифицирующие бактерии. Эти бактерии живут в почве и осуществляют окисление аммиака, образовавшегося при гниении органических остатков, до азотной кислоты. Последняя, реагирует с минеральными соединениями почвы, превращаются в соли азотной кислоты. Этот процесс проходит в две фазы.

Железобактерии превращают закисное железо в окисное. Образованная гидроокись железа оседает и образует так называемую болотную железную руду.

Некоторые микроорганизмы существуют за счёт окисления молекулярного водорода, обеспечивая тем самым автотрофный способ питания.

Характерной особенностью водородных бактерий является способность переключаться на гетеротрофный образ жизни при обеспечении их органическими соединениями и отсутствии водорода.

Таким образом, хемоавтотрофы являются типичными автотрофами, так как самостоятельно синтезируют из неорганических веществ необходимые органические соединения, а не берут их в готовом виде от других организмов, как гетеротрофы. От фототрофных растений хемоавтотрофные бактерии отличаются полной независимостью от света как источника энергии.

Бактериальный фотосинтез

Некоторые пигментосодержащие серобактерии (пурпурные, зелёные), содержащие специфические пигменты — бактериохлорофиллы, способны поглощать солнечную энергию, с помощью которой сероводород в их организмах расщепляется и отдаёт атомы водорода для восстановления соответствующих соединений. Этот процесс имеет много общего с фотосинтезом и отличается только тем, что у пурпурных и зелёных бактерий донором водорода является сероводород (изредка — карбоновые кислоты), а у зелёных растений — вода. У тех и других отщепление и перенесение водорода осуществляется благодаря энергии поглощённых солнечных лучей.

Такой бактериальный фотосинтез, который происходит без выделения кислорода, называется фоторедукцией. Фоторедукция углекислого газа связана с перенесением водорода не от воды, а от сероводорода:

6СО 2 +12Н 2 S+hv → С6Н 12 О 6 +12S=6Н 2 О

Биологическое значение хемосинтеза и бактериального фотосинтеза в масштабах планеты относительно невелико. Только хемосинтезирующие бактерии играют существенную роль в процессе круговорота серы в природе. Поглощаясь зелёными растениями в форме солей серной кислоты, сера восстанавливается и входит в состав белковых молекул. Далее при разрушении отмерших растительных и животных остатков гнилостными бактериями сера выделяется в виде сероводорода, который окисляется серобактериями до свободной серы (или серной кислоты), образующий в почве доступные для растения сульфиты. Хемо- и фотоавтотрофные бактерии имеют существенное значение в круговороте азота и серы.

Спорообразование

Внутри бактериальной клетки образуются споры. В процессе спорообразования бактериальная клетка претерпевает ряд биохимических процессов. В ней уменьшается количество свободной воды, снижается ферментативная активность. Это обеспечивает устойчивость спор к неблагоприятным условиям внешней среды (высокой температуре, высокой концентрации солей, высушиванию и др.). Спорообразование свойственно только небольшой группе бактерий.

Споры — не обязательная стадия жизненного цикла бактерий. Спорообразование начинается лишь при недостатке питательных веществ или накоплении продуктов обмена. Бактерии в виде спор могут длительное время находиться в состоянии покоя. Споры бактерий выдерживают продолжительное кипячение и очень длительное проммораживание. При наступлении благоприятных условий спора прорастает и становится жизнеспособной. Спора бактерий — это приспособление к выживанию в неблагоприятных условиях.

Размножение

Размножаются бактерии делением одной клетки на две. Достигнув определённого размера, бактерия делится на две одинаковые бактерии. Затем каждая из них начинает питаться, растёт, делится и так далее.

После удлинения клетки постепенно образуется поперечная перегородка, а затем дочерние клетки расходятся; у многих бактерий в определённых условиях клетки после деления остаются связанными в характерные группы. При этом в зависимости от направления плоскости деления и числа делений возникают разные формы. Размножение почкованием встречается у бактерий как исключение.

При благоприятных условиях деление клеток у многих бактерий происходит через каждые 20-30 минут. При таком быстром размножении потомство одной бактерии за 5 суток способно образовать массу, которой можно заполнить все моря и океаны. Простой подсчёт показывает, что за сутки может образоваться 72 поколения (720 000 000 000 000 000 000 клеток). Если перевести в вес — 4720 тонн. Однако в природе этого не происходит, так как большинство бактерий быстро погибают под действием солнечного света, при высушивании, недостатке пищи, нагревании до 65-100ºС, в результате борьбы между видами и т.д.

Бактерия (1), поглотившая достаточно пищи, увеличивается в размерах (2) и начинает готовиться к размножению (делению клетки). Её ДНК (у бактерии молекула ДНК замкнута в кольцо) удваивается (бактерия производит копию этой молекулы). Обе молекулы ДНК (3,4) оказываются, прикреплены к стенке бактерии и при удлинении бактерии расходятся в стороны (5,6). Сначала делится нуклеотид, затем цитоплазма.

После расхождения двух молекул ДНК на бактерии появляется перетяжка, которая постепенно разделяет тело бактерии на две части, в каждой из которых есть молекула ДНК (7).

Бывает (у сенной палочки), две бактерии слипаются, и между ними образуется перемычка (1,2).

По перемычке ДНК из одной бактерии переправляется в другую (3). Оказавшись в одной бактерии, молекулы ДНК сплетаются, слипаются в некоторых местах (4), после чего обмениваются участками (5).

Роль бактерий в природе

Круговорот

Бактерии — важнейшее звено общего круговорота веществ в природе. Растения создают сложные органические вещества из углекислого газа, воды и минеральных солей почвы. Эти вещества возвращаются в почву с отмершими грибами, растениями и трупами животных. Бактерии разлагают сложные вещества на простые, которые снова используют растения.

Бактерии разрушают сложные органические вещества отмерших растений и трупов животных, выделения живых организмов и разные отбросы. Питаясь этими органическими веществами, сапрофитные бактерии гниения превращают их в перегной. Это своеобразные санитары нашей планеты. Таким образом, бактерии активно участвуют в круговороте веществ в природе.

Почвообразование

Поскольку бактерии распространены практически повсеместно и встречаются в огромном количестве, они во многом определяют различные процессы, происходящие в природе. Осенью опадают листья деревьев и кустарников, отмирают надземные побеги трав, опадают старые ветки, время от времени падают стволы старых деревьев. Всё это постепенно превращается в перегной. В 1 см 3 . поверхностного слоя лесной почвы содержатся сотни миллионов сапрофитных почвенных бактерий нескольких видов. Эти бактерии превращают перегной в различные минеральные вещества, которые могут быть поглощены из почвы корнями растений.

Некоторые почвенные бактерии способны поглощать азот из воздуха, используя его в процессах жизнедеятельности. Эти азотофиксирующие бактерии живут самостоятельно или поселяются в корнях бобовых растений. Проникнув в корни бобовых, эти бактерии вызывают разрастание клеток корней и образование на них клубеньков.

Эти бактерии выделяют азотные соединения, которые используют растения. От растений бактерии получают углеводы и минеральные соли. Таким образом, между бобовым растением и клубеньковыми бактериями существует тесная связь, полезная как одному, так и другому организму. Это явление носит название симбиоза.

Благодаря симбиозу с клубеньковыми бактериями бобовые растения обогащают почву азотом, способствуя повышению урожая.

Распространение в природе

Микроорганизмы распространены повсеместно. Исключение составляют лишь кратеры действующих вулканов и небольшие площадки в эпицентрах взорванных атомных бомб. Ни низкие температуры Антарктики, ни кипящие струи гейзеров, ни насыщенные растворы солей в соляных бассейнах, ни сильная инсоляция горных вершин, ни жёсткое облучение атомных реакторов не мешают существованию и развитию микрофлоры. Все живые существа постоянно взаимодействуют с микроорганизмами, являясь часто не только их хранилищами, но и распространителями. Микроорганизмы — аборигены нашей планеты, активно осваивающие самые невероятные природные субстраты.

Микрофлора почвы

Количество бактерий в почве чрезвычайно велико — сотни миллионов и миллиардов особей в 1 грамме. В почве их значительно больше, чем в воде и воздухе. Общее количество бактерий в почвах меняется. Количество бактерий зависит от типа почв, их состояния, глубины расположения слоёв.

На поверхности почвенных частиц микроорганизмы располагаются небольшими микроколониями (по 20-100 клеток в каждой). Часто они развиваются в толщах сгустков органического вещества, на живых и отмирающих корнях растений, в тонких капиллярах и внутри комочков.

Микрофлора почвы очень разнообразна. Здесь встречаются разные физиологические группы бактерий: бактерии гниения, нитрифицирующие, азотфиксирующие, серобактерии и др. среди них есть аэробы и анаэробы, споровые и не споровые формы. Микрофлора — один из факторов образования почв.

Областью развития микроорганизмов в почве является зона, примыкающая к корням живых растений. Её называют ризосферой, а совокупность микроорганизмов, содержащихся в ней, — ризосферной микрофлорой.

Микрофлора водоёмов

Вода — природная среда, где в большом количестве развиваются микроорганизмы. Основная масса их попадает в воду из почвы. Фактор, определяющий количество бактерий в воде, наличие в ней питательных веществ. Наиболее чистыми являются воды артезианских скважин и родниковые. Очень богаты бактериями открытые водоёмы, реки. Наибольшее количество бактерий находится в поверхностных слоях воды, ближе к берегу. При удалении от берега и увеличении глубины количество бактерий уменьшается.

Чистая вода содержит 100-200 бактерий в 1 мл., а загрязнённая — 100-300 тыс. и более. Много бактерий в донном иле, особенно в поверхностном слое, где бактерии образуют плёнку. В этой плёнке много серо- и железобактерий, которые окисляют сероводород до серной кислоты и тем самым предотвращают замор рыбы. В иле больше спороносных форм, в то время как в воде преобладают неспороносные.

По видовому составу микрофлора воды сходна с микрофлорой почвы, но встречаются и специфические формы. Разрушая различные отбросы, попавшие в воду, микроорганизмы постепенно осуществляют так называемое биологическое очищение воды.

Микрофлора воздуха

Микрофлора воздуха менее многочисленна, чем микрофлора почвы и воды. Бактерии поднимаются в воздух с пылью, некоторое время могут находиться там, а затем оседают на поверхность земли и гибнут от недостатка питания или под действием ультрафиолетовых лучей. Количество микроорганизмов в воздухе зависит от географической зоны, местности, времени года, загрязнённостью пылью и др. каждая пылинка является носителем микроорганизмов. Больше всего бактерий в воздухе над промышленными предприятиями. Воздух сельской местности чище. Наиболее чистый воздух над лесами, горами, снежными пространствами. Верхние слои воздуха содержат меньше микробов. В микрофлоре воздуха много пигментированных и спороносных бактерий, которые более устойчивы, чем другие, к ультрафиолетовым лучам.

Микрофлора организма человека

Тело человека, даже полностью здорового, всегда является носителем микрофлоры. При соприкосновении тела человека с воздухом и почвой на одежде и коже оседают разнообразные микроорганизмы, в том числе и патогенные (палочки столбняка, газовой гангрены и др.). Наиболее часто загрязняются открытые части человеческого тела. На руках обнаруживают кишечные палочки, стафилококки. В ротовой полости насчитывают свыше 100 видов микробов. Рот с его температурой, влажностью, питательными остатками — прекрасная среда для развития микроорганизмов.

Желудок имеет кислую реакцию, поэтому основная масса микроорганизмов в нём гибнет. Начиная с тонкого кишечника реакция становится щелочной, т.е. благоприятной для микробов. В толстых кишках микрофлора очень разнообразна. Каждый взрослый человек выделяет ежедневно с экскрементами около 18 млрд. бактерий, т.е. больше особей, чем людей на земном шаре.

Внутренние органы, не соединяющиеся с внешней средой (мозг, сердце, печень, мочевой пузырь и др.), обычно свободны от микробов. В эти органы микробы попадают только во время болезни.

Бактерии в круговороте веществ

Микроорганизмы вообще и бактерии в частности играют большую роль в биологически важных круговоротах веществ на Земле, осуществляя химические превращения, совершенно недоступные ни растениям, ни животным. Различные этапы круговорота элементов осуществляются организмами разного типа. Существование каждой отдельной группы организмов зависит от химического превращения элементов, осуществляемого другими группами.

Круговорот азота

Циклическое превращение азотистых соединений играет первостепенную роль в снабжении необходимыми формами азота различных по пищевым потребностям организмов биосферы. Свыше 90% общей фиксации азота обусловлено метаболической активностью определённых бактерий.

Круговорот углерода

Биологическое превращение органического углерода в углекислый газ, сопровождающееся восстановлением молекулярного кислорода, требует совместной метаболической активности разнообразных микроорганизмов. Многие аэробные бактерии осуществляют полное окисление органических веществ. В аэробных условиях органические соединения первоначально расщепляются путём сбраживания, а органические конечные продукты брожения окисляются далее в результате анаэробного дыхания, если имеются неорганические акцепторы водорода (нитрат, сульфат или СО 2).

Круговорот серы

Для живых организмов сера доступна в основном в форме растворимых сульфатов или восстановленных органических соединений серы.

Круговорот железа

В некоторых водоёмах с пресной водой содержатся в высоких концентрациях восстановленные соли железа. В таких местах развивается специфическая бактериальная микрофлора — железобактерии, окисляющие восстановленное железо. Они участвуют в образовании болотных железных руд и водных источников, богатых солями железа.

Бактерии являются самыми древними организмами, появившимися около 3,5 млрд. лет назад в архее. Около 2,5 млрд. лет они доминировали на Земле, формируя биосферу, участвовали в образовании кислородной атмосферы.

Бактерии являются одними из наиболее просто устроенных живых организмов (кроме вирусов). Полагают, что они - первые организмы, появившиеся на Земле.

Приняв во внимание господствующие ветры, Дэвид Смит (David J. Smith) посчитал, что образцы воздуха, собранные на вершине спящего вулкана в Орегоне, будут содержать в большом количестве ДНК мертвых микроорганизмов из Азии и Тихого океана. Он не ожидал, что что-то сможет пережить полет в верхних слоях атмосферы с их суровыми температурами и долететь до научно-исследовательской станции в обсерватории Маунт-Бэчелор, которая расположена на высоте трех тысяч метров.

«Я думал, что мы сможем собрать только мертвую биомассу», — говорит Смит , работающий научным сотрудником в исследовательском центре НАСА имени Эймса.

Но когда его группа весной 2011 года вернулась в лабораторию, собрав образцы воздуха из двух крупных столбов вулканического пепла, ученые обнаружили благоденствующую компанию маленьких путешественников. Более 27% бактерий и 47% грибков из взятых образцов были живы.

В конечном итоге команда исследователей выявила около 2 100 видов микробов, в том числе, микробов Archea, которые прежде находили только на изолированном японском побережье. «На мой взгляд, это было бесспорное доказательство», — говорит Смит. Как он любит выражаться, Азия чихнула на Америку.

Контекст

Земля - планета бактерий

Украiна молода 27.03.2013

Вечный бой между бактериями и медициной

SwissInfo 01.03.2015

Следы сверхновой звезды в земных бактериях

Nature 17.04.2013
Микробов находят в небе с тех пор, как Дарвин в 1830-х годах собрал образцы разнесенной воздухом пыли на корабле «Бигль» в тысяче милях западнее Африки. Однако новые возможности по проведению анализа ДНК, по сбору образцов на большой высоте и по атмосферному моделированию позволяют ученым по-новому взглянуть на жизнь, царящую высоко над Землей. Например, проведенные недавно исследования говорят о том, что микробы оказывают тайное воздействие на атмосферу. Они собирают облака, вызывают дожди, разносят болезни от континента к континенту, а может быть, даже меняют климат.

«Я считаю, что атмосфера это большая трасса, в буквальном смысле этого слова, — говорит Смит. — Она дает возможность экосистемам, расположенным в тысячах километрах друг от друга, обмениваться микроорганизмами, и на мой взгляд, это имеет гораздо более глубокие экологические последствия, чем мы думаем».

Перелетающие по воздуху микробы могут оказывать огромное воздействие на нашу планету. Некоторые ученые объясняют вспышку ящура в Британии в 2001 году гигантской бурей на севере Африки, которая перенесла пыль, а вместе с ней и споры этого заболевания на тысячи миль к северу. Эта буря произошла всего за неделю до того, как были выявлены первые случаи ящура на британской земле.

Вирус синего языка овец, заражающий домашних и диких животных, когда-то присутствовал только в Африке. Но сейчас его находят и в Великобритании, что может являться результатом преобладающих ветров.

Ученые, занимающиеся проблемами исчезновения коралловых рифов на девственных просторах Карибского моря, говорят, что вся причина в пыли и в переносимой ею микробах, которые поднимаются в воздух во время песчаных бурь в Африке, а затем перелетают на запад. По их словам, грибок, убивающий коралл морской веер, впервые попал на Карибы в 1983 году, когда из-за засухи в Сахаре появились пылевые облака, перенесшиеся через Атлантику.

На западе Техаса ученые из Техасского технологического университета собрали пробы воздуха с наветренной и подветренной стороны от 10 откормочных площадок для скота. В образцах с подветренной стороны устойчивых к антибиотикам микробов оказалось на 4000% больше, чем с наветренной. Адъюнкт-профессор Филип Смит (Philip Smith), занимающийся наземной экотоксикологией, а также адъюнкт-профессор Грег Майер (Greg Mayer), специализирующийся на молекулярной токсикологии, говорят, что эта работа заложила основу для дальнейших исследований.

Они провели исследование жизнестойкости микроорганизмов, материалы которого будут опубликованы в начале 2016 года, а теперь хотят понять, насколько далеко могут перелетать частицы, и может ли устойчивость к антибиотикам передаваться местным микробам. Антибиотики, отмечает Майер, существовали в природе еще задолго до того, как их позаимствовал человек. Но что происходит, когда они сосредотачиваются в одном месте или переносятся ветром?

Сейчас понятно одно: жизнеспособных микробов в суровых и неприветливых местах гораздо больше, чем считали исследователи.

Ученые из Технологического института штата Джорджия, получив от НАСА грант на научные исследования, изучили пробы воздуха, взятые с борта самолета, пролетавшего высоко над зонами ураганов. Они обнаружили, что живые клетки составляют примерно 20% от количества микробов, поднятых в воздух бурей.

«Мы не ожидали, что найдем так много живых и невредимых бактериальных клеток на высоте 10 тысяч метров», — рассказывает микробиолог Костас Константинидис (Kostas Konstantinidis) из Технологического института штата Джорджия.

Константинидис с коллегами заинтересовался тем, каким образом микробы содействуют формированию облаков и выпадению осадков. Ядро находящейся в воздухе бактериальной клетки инициирует конденсацию. Сейчас некоторые ученые полагают, что микробы играют важную роль в метеорологии. «Они могут активно влиять на формирование облаков и на климат», — отмечает Константинидис.

Смит же заинтересовался тем, как после длительного путешествия в условиях жесткой радиации в верхних слоях атмосферы микробы выживают и даже восстанавливаются. Он возглавил проект НАСА EMIST (Микроорганизмы в стратосфере), в рамках которого формирующие споры бактерии дважды поднимали на воздушном шаре на высоту 38 километров над пустыней в Нью-Мексико, чтобы понять, как они там выживают.

Для НАСА эта работа связана с защитой планет от неблагоприятных воздействий. Если зараженный земными бактериями космический корабль прилетит на Марс, где условия схожи со стратосферой Земли, а бактерии в ходе полета выживут, то это осложнит наши поиски следов марсианской жизни, и может даже уничтожить тамошних микробов, если они существуют.

Но эта работа дает и более широкие возможности. Подобно исследователям прошлого, которые изучали влажные тропические леса в поисках чудо-лекарств, сегодняшние ученые могут в один прекрасный день найти лекарство в миниатюрных обитателях атмосферы. Может быть, атмосферные бактерии дадут нам надежную защиту от солнца и радиации.

«Самое удивительное заключается в том, что организм, способный выжить в исключительно суровых условиях, во многих случаях является одноклеточным, — говорит Смит. — Как ему это удается?»

Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.