Примеры - математическая индукция. Метод математической индукции и его применение к решению задач

Применяя метод математической индукции, доказать, что для любого натурального n справедливы следующие равенства:
а) ;
б) .


Решение.

а) При n = 1 равенство справедливо. Предполагая справедливость равенства при n , покажем справедливость его и при n + 1. Действительно,

что и требовалось доказать.

б) При n = 1 справедливость равенства очевидна. Из предположения справедливости его при n следует

Учитывая равенство 1 + 2 + ... + n = n (n + 1)/2, получаем

1 3 + 2 3 + ... + n 3 + (n + 1) 3 = (1 + 2 + ... + n + (n + 1)) 2 ,

т. е. утверждение справедливо и при n + 1.

Пример 1. Доказать следующие равенства

где n О N .

Решение. a) При n = 1 равенство примет вид 1=1, следовательно, P (1) истинно. Предположим, что данное равенство справедливо, то есть, имеет место

. Следует проверить (доказать), что P (n + 1), то есть истинно. Поскольку (используется предположение индукции) получим то есть, P (n + 1) - истинное утверждение.

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n .

Замечание 2. Этот пример можно было решить и иначе. Действительно, сумма 1 + 2 + 3 + ... + n есть сумма первых n членов арифметической прогрессии с первым членом a 1 = 1 и разностью d = 1. В силу известной формулы , получим

b) При n = 1 равенство примет вид: 2·1 - 1 = 1 2 или 1=1, то есть, P (1) истинно. Допустим, что имеет место равенство

1 + 3 + 5 + ... + (2n - 1) = n 2 и докажем, что имеет место P (n + 1): 1 + 3 + 5 + ... + (2n - 1) + (2(n + 1) - 1) = (n + 1) 2 или 1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = (n + 1) 2 .

Используя предположение индукции, получим

1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = n 2 + (2n + 1) = (n + 1) 2 .

Таким образом, P (n + 1) истинно и, следовательно, требуемое равенство доказано.

Замечание 3. Этот пример можно решить (аналогично предыдущему) без использования метода математической индукции.

c) При n = 1 равенство истинно: 1=1. Допустим, что истинно равенство

и покажем, что то есть истинность P (n ) влечет истинность P (n + 1). Действительно, и, так как 2 n 2 + 7 n + 6 = (2 n + 3)(n + 2), получим и, следовательно, исходное равенство справедливо для любого натурального n .

d) При n = 1 равенство справедливо: 1=1. Допустим, что имеет место

и докажем, что

Действительно,

e) Утверждение P (1) справедливо: 2=2. Допустим, что равенство

справедливо, и докажем, что оно влечет равенство Действительно,

Следовательно, исходное равенство имеет место для любого натурального n .

f) P (1) справедливо: 1 / 3 = 1 / 3 . Пусть имеет место равенство P (n ):

. Покажем, что последнее равенство влечет следующее:

Действительно, учитывая, что P (n ) имеет место, получим

Таким образом, равенство доказано.

g) При n = 1 имеем a + b = b + a и, следовательно, равенство справедливо.

Пусть формула бинома Ньютона справедлива при n = k , то есть,

Тогда Используя равенство получим

Пример 2. Доказать неравенства

a) неравенство Бернулли: (1 + a ) n ≥ 1 + n a , a > -1, n О N .
b) x 1 + x 2 + ... + x n n , если x 1 x 2 · ... ·x n = 1 и x i > 0, .
c) неравенство Коши относительно среднего арифемтического и среднего геометрического
где x i > 0, , n ≥ 2.
d) sin 2n a + cos 2n a ≤ 1, n О N .
e)
f) 2 n > n 3 , n О N , n ≥ 10.

Решение. a) При n = 1 получаем истинное неравенство

1 + a ≥ 1 + a . Предположим, что имеет место неравенство

(1 + a ) n ≥ 1 + n a (1)
и покажем, что тогда имеет место и (1 + a ) n + 1 ≥ 1 + (n + 1)a .

Действительно, поскольку a > -1 влечет a + 1 > 0, то умножая обе части неравенства (1) на (a + 1), получим

(1 + a ) n (1 + a ) ≥ (1 + n a )(1 + a ) или (1 + a ) n + 1 ≥ 1 + (n + 1)a + n a 2 Поскольку n a 2 ≥ 0, следовательно, (1 + a ) n + 1 ≥ 1 + (n + 1)a + n a 2 ≥ 1 + (n + 1)a .

Таким образом, если P (n ) истинно, то и P (n + 1) истинно, следовательно, согласно принципу математической индукции, неравенство Бернулли справедливо.

b) При n = 1 получим x 1 = 1 и, следовательно, x 1 ≥ 1 то есть P (1) - справедливое утверждение. Предположим, что P (n ) истинно, то есть, если adica, x 1 ,x 2 ,...,x n - n положительных чисел, произведение которых равно единице, x 1 x 2 ·...·x n = 1, и x 1 + x 2 + ... + x n n .

Покажем, что это предложение влечет истинность следующего: если x 1 ,x 2 ,...,x n ,x n +1 - (n + 1) положительных чисел, таких, что x 1 x 2 ·...·x n ·x n +1 = 1, тогда x 1 + x 2 + ... + x n + x n + 1 ≥n + 1.

Рассмотрим следующие два случая:

1) x 1 = x 2 = ... = x n = x n +1 = 1. Тогда сумма этих чисел равна (n + 1), и требуемое неравество выполняется;

2) хотя бы одно число отлично от единицы, пусть, например, больше единицы. Тогда, поскольку x 1 x 2 · ... ·x n ·x n + 1 = 1, существует еще хотя бы одно число, отличное от единицы (точнее, меньше единицы). Пусть x n + 1 > 1 и x n < 1. Рассмотрим n положительных чисел

x 1 ,x 2 ,...,x n -1 ,(x n ·x n +1). Произведение этих чисел равно единице, и, согласно гипотезе, x 1 + x 2 + ... + x n -1 + x n x n + 1 ≥ n . Последнее неравенство переписывается следующим образом: x 1 + x 2 + ... + x n -1 + x n x n +1 + x n + x n +1 ≥ n + x n + x n +1 или x 1 + x 2 + ... + x n -1 + x n + x n +1 ≥ n + x n + x n +1 - x n x n +1 .

Поскольку

(1 - x n )(x n +1 - 1) > 0, то n + x n + x n +1 - x n x n +1 = n + 1 + x n +1 (1 - x n ) - 1 + x n =
= n + 1 + x n +1 (1 - x n ) - (1 - x n ) = n + 1 + (1 - x n )(x n +1 - 1) ≥ n + 1. Следовательно, x 1 + x 2 + ... + x n + x n +1 ≥ n +1, то есть, если P (n ) справедливо, то и P (n + 1) справедливо. Неравенство доказано.

Замечание 4. Знак равенства имеет место тогда и только тогда, когда x 1 = x 2 = ... = x n = 1.

c) Пусть x 1 ,x 2 ,...,x n - произвольные положительные числа. Рассмотрим следующие n положительных чисел:

Поскольку их произведение равно единице: согласно ранее доказанному неравенству b), следует, что откуда

Замечание 5. Равенство выполняется если и только если x 1 = x 2 = ... = x n .

d) P (1) - справедливое утверждение: sin 2 a + cos 2 a = 1. Предположим, что P (n ) - истинное утверждение:

Sin 2n a + cos 2n a ≤ 1 и покажем, что имеет место P (n + 1). Действительно, sin 2(n + 1) a + cos 2(n + 1) a = sin 2n a ·sin 2 a + cos 2n a ·cos 2 a < sin 2n a + cos 2n a ≤ 1 (если sin 2 a ≤ 1, то cos 2 a < 1, и обратно: если cos 2 a ≤ 1, то sin 2 a < 1). Таким образом, для любого n О N sin 2n a + cos 2n ≤ 1 и знак равенства достигается лишь при n = 1.

e) При n = 1 утверждение справедливо: 1 < 3 / 2 .

Допустим, что и докажем, что

Поскольку
учитывая P (n ), получим

f) Учитывая замечание 1 , проверим P (10): 2 10 > 10 3 , 1024 > 1000, следовательно, для n = 10 утверждение справедливо. Предположим, что 2 n > n 3 (n > 10) и докажем P (n + 1), то есть 2 n +1 > (n + 1) 3 .

Поскольку при n > 10 имеем или , следует, что

2n 3 > n 3 + 3n 2 + 3n + 1 или n 3 > 3n 2 + 3n + 1. Учитывая неравенство (2 n > n 3 ), получим 2 n +1 = 2 n ·2 = 2 n + 2 n > n 3 + n 3 > n 3 + 3n 2 + 3n + 1 = (n + 1) 3 .

Таким образом, согласно методу математической индукции, для любого натурального n О N , n ≥ 10 имеем 2 n > n 3 .

Пример 3. Доказать, что для любого n О N

Решение. a) P (1) - истинное утверждение (0 делится на 6). Пусть P (n ) справедливо, то есть n (2n 2 - 3n + 1) = n (n - 1)(2n - 1) делится на 6. Покажем, что тогда имеет место P (n + 1), то есть, (n + 1)n (2n + 1) делится на 6. Действительно, поскольку

и, как n (n - 1)(2 n - 1), так и 6 n 2 делятся на 6, тогда и их сумма n (n + 1)(2 n + 1) делится 6.

Таким образом, P (n + 1) - справедливое утверждение, и, следовательно, n (2n 2 - 3n + 1) делится на 6 для любого n О N .

b) Проверим P (1): 6 0 + 3 2 + 3 0 = 11, следовательно, P (1) - справедливое утверждение. Следует доказать, что если 6 2n -2 + 3 n +1 + 3 n -1 делится на 11 (P (n )), тогда и 6 2n + 3 n +2 + 3 n также делится на 11 (P (n + 1)). Действительно, поскольку

6 2n + 3 n +2 + 3 n = 6 2n -2+2 + 3 n +1+1 + 3 n -1+1 = = 6 2 ·6 2n -2 + 3·3 n +1 + 3·3 n -1 = 3·(6 2n -2 + 3 n +1 + 3 n -1) + 33·6 2n -2 и, как 6 2n -2 + 3 n +1 + 3 n -1 , так и 33·6 2n -2 делятся на 11, тогда и их сумма 6 2n + 3 n +2 + 3 n делится на 11. Утверждение доказано. Индукция в геометрии

Пример 4. Вычислить сторону правильного 2 n -угольника, вписанного в окружность радиуса R .

Лекция 6. Метод математической индукции.

Новые знания в науке и жизни добываются разными способами, но все они (если не углубляться в детали) делятся на два вида – переход от общего к частному и от частного к общему. Первый – это дедукция, второй – индукция. Дедуктивные рассуждения – это то, что в математике обычно называют логическими рассуждениями , и в математической науке дедукция является единственным законным методом исследования. Правила логических рассуждений были сформулированы два с половиной тысячелетия назад древнегреческим учёным Аристотелем. Он создал полный список простейших правильных рассуждений, силлогизмов – «кирпичиков» логики, одновременно указав типичные рассуждения, очень похожие на правильные, однако неправильные (с такими «псевдологическими» рассуждениями мы часто встречаемся в СМИ).

Индукция (induction – по-латыни наведение ) наглядно иллюстрируется известной легендой о том, как Исаак Ньютон сформулировал закон всемирного тяготения после того, как ему на голову упало яблоко. Ещё пример из физики: в таком явлении, как электромагнитная индукция, электрическое поле создает, «наводит» магнитное поле. «Ньютоново яблоко» – типичный пример ситуации, когда один или несколько частных случаев, то есть наблюдения , «наводят» на общее утверждение, общий вывод делается на основании частных случаев. Индуктивный метод является основным для получения общих закономерностей и в естественных, и в гуманитарных науках. Но он имеет весьма существенный недостаток: на основании частных примеров может быть сделан неверный вывод. Гипотезы, возникающие при частных наблюдениях, не всегда являются правильными. Рассмотрим пример, принадлежащий Эйлеру.

Будем вычислять значение трехчлена при некоторых первых значенияхn :

Заметим, что получаемые в результате вычислений числа являются простыми. И непосредственно можно убедиться, что для каждого n от 1 до 39 значение многочлена
является простым числом. Однако приn =40 получаем число 1681=41 2 , которое не является простым. Таким образом, гипотеза, которая здесь могла возникнуть, то есть гипотеза о том, что при каждом n число
является простым, оказывается неверной.

Лейбниц в 17 веке доказал, что при всяком целом положительном n число
делится на 3, число
делится на 5 и т.д. На основании этого он предположил, что при всяком нечётномk и любом натуральном n число
делится наk , но скоро сам заметил, что
не делится на 9.

Рассмотренные примеры позволяют сделать важный вывод: утверждение может быть справедливым в целом ряде частных случаев и в то же время несправедливым вообще. Вопрос о справедливости утверждения в общем случае удается решить посредством применения особого метода рассуждений, называемого методом математической индукции (полной индукции, совершенной индукции).

6.1. Принцип математической индукции.

♦ В основе метода математической индукции лежит принцип математической индукции , заключающийся в следующем:

1) проверяется справедливость этого утверждения для n =1 (базис индукции) ,

2) предполагается справедливость этого утверждения для n = k , где k – произвольное натуральное число 1 (предположение индукции) , и с учётом этого предположения устанавливается справедливость его для n = k +1.

Доказательство . Предположим противное, то есть предположим, что утверждение справедливо не для всякого натурального n . Тогда существует такое натуральное m , что:

1) утверждение для n =m несправедливо,

2) для всякого n , меньшего m , утверждение справедливо (иными словами, m есть первое натуральное число, для которого утверждение несправедливо).

Очевидно, что m >1, т.к. для n =1 утверждение справедливо (условие 1). Следовательно,
– натуральное число. Выходит, что для натурального числа
утверждение справедливо, а для следующего натурального числаm оно несправедливо. Это противоречит условию 2. ■

Заметим, что в доказательстве использовалась аксиома о том, что в любой совокупности натуральных чисел содержится наименьшее число.

Доказательство, основанное на принципе математической индукции, называется методом полной математической индукции .

Пример 6.1. Доказать, что при любом натуральном n число
делится на 3.

Решение.

1) При n =1 , поэтому a 1 делится на 3 и утверждение справедливо при n =1.

2) Предположим, что утверждение справедливо при n =k ,
, то есть что число
делится на 3, и установим, что при n =k +1 число делится на 3.

В самом деле,

Т.к. каждое слагаемое делится на 3, то их сумма также делится на 3. ■

Пример 6.2. Доказать, что сумма первых n натуральных нечётных чисел равна квадрату их числа, то есть .

Решение. Воспользуемся методом полной математической индукции.

1) Проверяем справедливость данного утверждения при n =1: 1=1 2 – это верно.

2) Предположим, что сумма первых k (
) нечётных чисел равна квадрату числа этих чисел, то есть . Исходя из этого равенства, установим, что сумма первых k +1 нечётных чисел равна
, то есть .

Пользуемся нашим предположением и получаем

. ■

Метод полной математической индукции применяется для доказательства некоторых неравенств. Докажем неравенство Бернулли.

Пример 6.3. Доказать, что при
и любом натуральномn справедливо неравенство
(неравенство Бернулли).

Решение. 1) При n =1 получаем
, что верно.

2) Предполагаем, что при n =k имеет место неравенство
(*). Используя это предположение, докажем, что
. Отметим, что при
это неравенство выполняется и поэтому достаточно рассмотреть случай
.

Умножим обе части неравенства (*) на число
и получим:

То есть (1+
.■

Доказательство методом неполной математической индукции некоторого утверждения, зависящего от n , где
проводится аналогичным образом, но в начале устанавливается справедливость для наименьшего значенияn .

В некоторых задачах явно не сформулировано утверждение, которое можно доказать методом математической индукции. В таких случаях надо самим установить закономерность и высказать гипотезу о справедливости этой закономерности, а затем методом математической индукции проверить предполагаемую гипотезу.

Пример 6.4. Найти сумму
.

Решение. Найдём суммы S 1 , S 2 , S 3 . Имеем
,
,
. Высказываем гипотезу, что при любом натуральномn справедлива формула
. Для проверки этой гипотезы воспользуемся методом полной математической индукции.

1) При n =1 гипотеза верна, т.к.
.

2) Предположим, что гипотеза верна при n =k ,
, то есть
. Используя эту формулу, установим, что гипотеза верна и приn =k +1, то есть

В самом деле,

Итак, исходя из предположения, что гипотеза верна при n =k ,
, доказано, что она верна и при n =k +1, и на основании принципа математической индукции делаем вывод, что формула справедлива при любом натуральном n . ■

Пример 6.5. В математике доказывается, что сумма двух равномерно непрерывных функций является равномерно непрерывной функцией. Опираясь на это утверждение, нужно доказать, что сумма любого числа
равномерно непрерывных функций является равномерно непрерывной функцией. Но поскольку мы ещё не ввели понятие «равномерно непрерывная функция», поставим задачу более абстрактно: пусть известно, что сумма двух функций, обладающих некоторым свойством S , сама обладает свойством S . Докажем, что сумма любого числа функций обладает свойством S .

Решение. Базис индукции здесь содержится в самой формулировке задачи. Сделав предположение индукции, рассмотрим
функций f 1 , f 2 , …, f n , f n +1 , обладающих свойством S . Тогда . В правой части первое слагаемое обладает свойствомS по предположению индукции, второе слагаемое обладает свойством S по условию. Следовательно, их сумма обладает свойством S – для двух слагаемых «работает» базис индукции.

Тем самым утверждение доказано и будем использовать его далее. ■

Пример 6.6. Найти все натуральные n , для которых справедливо неравенство

.

Решение. Рассмотрим n =1, 2, 3, 4, 5, 6. Имеем: 2 1 >1 2 , 2 2 =2 2 , 2 3 <3 2 , 2 4 =4 2 , 2 5 >5 2 , 2 6 >6 2 . Таким образом, можно высказать гипотезу: неравенство
имеет место для каждого
. Для доказательства истинности этой гипотезы воспользуемся принципом неполной математической индукции.

1) Как было установлено выше, данная гипотеза истинна при n =5.

2) Предположим, что она истинна для n =k ,
, то есть справедливо неравенство
. Используя это предположение, докажем, что справедливо неравенство
.

Т. к.
и при
имеет место неравенство

при
,

то получаем, что
. Итак, истинность гипотезы приn =k +1 следует из предположения, что она верна при n =k ,
.

Из пп. 1 и 2 на основании принципа неполной математической индукции следует, что неравенство
верно при каждом натуральном
. ■

Пример 6.7. Доказать, что для любого натурального числа n справедлива формула дифференцирования
.

Решение. При n =1 данная формула имеет вид
, или 1=1, то есть она верна. Сделав предположение индукции, будем иметь:

что и требовалось доказать. ■

Пример 6.8. Доказать, что множество, состоящее из n элементов, имеет подмножеств.

Решение. Множество, состоящее из одного элемента а , имеет два подмножества. Это верно, поскольку все его подмножества – пустое множество и само это множество, и 2 1 =2.

Предположим, что всякое множество из n элементов имеет подмножеств. Если множество А состоит изn +1 элементов, то фиксируем в нём один элемент – обозначим его d , и разобьём все подмножества на два класса – не содержащие d и содержащие d . Все подмножества из первого класса являются подмножествами множества В, получающегося из А выбрасыванием элемента d .

Множество В состоит из n элементов, и поэтому, по предположению индукции, у него подмножеств, так что в первом классеподмножеств.

Но во втором классе подмножеств столько же: каждое из них получается ровно из одного подмножества первого класса добавлением элемента d . Следовательно, всего у множества А
подмножеств.

Тем самым утверждение доказано. Отметим, что оно справедливо и для множества, состоящего из 0 элементов – пустого множества: оно имеет единственное подмножество – самого себя, и 2 0 =1. ■

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

Слово индукция по-русски означает наведение, а индуктивными называют выводы, на основе наблюдений, опытов, т.е. полученные путем заключения от частного к общему.

Например, мы каждый день наблюдаем, что Солнце восходит с востока. Поэтому можно быть уверенным, что и завтра оно появится на востоке, а не на западе. Этот вывод мы делаем, не прибегая ни к каким предположениям о причине движения Солнца по небу (более того, само это движение оказывается кажущимся, поскольку на самом деле движется земной шар). И, тем не менее, этот индуктивный вывод правильно описывает те наблюдения, которые мы проведем завтра.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. И хотя теоретическая механика основывается на трех законах движения Ньютона, сами эти законы явились результатом глубокого продумывания опытных данных, в частности законов Кеплера движения планет, выведенных им при обработке многолетних наблюдений датского астронома Тихо Браге. Наблюдение, индукция оказываются полезными и в дальнейшем для уточнения сделанных предположений. После опытов Майкельсона по измерению скорости света в движущейся среде оказалось необходимым уточнить законы физики, создать теорию относительности.

В математике роль индукции в значительной степени состоит в том, что она лежит в основе выбираемой аксиоматики. После того как длительная практика показала, что прямой путь всегда короче кривого или ломанного, естественно было сформулировать аксиому: для любых трех точек А, В и С выполняется неравенство

Лежащее в основе арифметики понятие следовать за тоже появилось при наблюдениях за строем солдат, кораблей и другими упорядоченными множествами.

Не следует, однако, думать, что этим исчерпывается роль индукции в математике. Разумеется, мы не должны экспериментально проверять теоремы, логически выведенные из аксиом: если при выводе не было сделано логических ошибок, то они постольку верны, поскольку истинны принятые нами аксиомы. Но из данной системы аксиом можно вывести очень много утверждений. И отбор тех утверждений, которые надо доказывать, вновь подсказывается индукцией. Именно она позволяет отделить полезные теоремы от бесполезных, указывает, какие теоремы могут оказаться верными, и даже помогает наметить путь доказательства.


    Суть метода математической индукции

Во многих разделах арифметики, алгебры, геометрии, анализа приходится доказывать истинность предложений А(n), зависящих от натуральной переменной. Доказательство истинности предложения А(n) для всех значений переменной часто удается провести методом математической индукции, который основан на следующем принципе.

Предложение А(n) считается истинным для всех натуральных значений переменной, если выполнены следующие два условия:

    Предложение А(n) истинно для n=1.

    Из предположения, что А(n) истинно для n=k (где k - любое натуральное число), следует, что оно истинно и для следующего значения n=k+1.

Этот принцип называется принципом математической индукции. Обычно он выбирается в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства.

Под методом математической индукции понимают следующий способ доказательства. Если требуется доказать истинность предложения А(n) для всех натуральных n, то, во-первых, следует проверить истинность высказывания А(1) и, во-вторых, предположив истинность высказывания А(k), попытаться доказать, что высказывание А(k+1) истинно. Если это удается доказать, причем доказательство остается справедливым для каждого натурального значения k, то в соответствии с принципом математической индукции предложение А(n) признается истинным для всех значений n.

Метод математической индукции широко применяется при доказательстве теорем, тождеств, неравенств, при решении задач на делимость, при решении некоторых геометрических и многих других задач.


    Метод математической индукции в решении задач на

делимость

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Следующее утверждение можно сравнительно просто доказать. Покажем, как оно получается с помощью метода математической индукции.

Пример 1 . Если n - натуральное число, то число четное.

При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как , a 2k - четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность .Значит, четно при всех натуральных значениях n.

Пример 2. Доказать истинность предложения

A(n)={число 5 кратно 19}, n - натуральное число.

Решение.

Высказывание А(1)={число кратно 19} истинно.

Предположим, что для некоторого значения n=k

А(k)={число кратно 19} истинно. Тогда, так как

Очевидно, что и A(k+1) истинно. Действительно, первое слагаемое делится на 19 в силу предположения, что A(k) истинно; второе слагаемое тоже делится на 19, потому что содержит множитель 19. Оба условия принципа математической индукции выполнены, следовательно, предложение A(n) истинно при всех значениях n.


    Применение метода математической индукции к

суммированию рядов

Пример 1. Доказать формулу

, n - натуральное число.

Решение.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим


Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Пример 2. Доказать, что сумма n первых чисел натурального ряда равна .

Решение.

Обозначим искомую сумму , т.е. .

При n=1 гипотеза верна.

Пусть . Покажем, что .

В самом деле,

Задача решена.

Пример 3. Доказать, что сумма квадратов n первых чисел натурального ряда равна .

Решение.

Пусть .

.

Предположим, что . Тогда

И окончательно .

Пример 4. Доказать, что .

Решение.

Если , то

Пример 5. Доказать, что

Решение.

При n=1 гипотеза очевидно верна.

Пусть .

Докажем, что .

Действительно,

    Примеры применения метода математической индукции к

доказательству неравенств

Пример 1. Доказать, что при любом натуральном n>1

.

Решение.

Обозначим левую часть неравенства через .

Следовательно, при n=2 неравенство справедливо.

Пусть при некотором k. Докажем, что тогда и . Имеем , .

Сравнивая и , имеем , т.е. .

При любом натуральном k правая часть последнего равенства положительна. Поэтому . Но , значит, и .

Пример 2. Найти ошибку в рассуждении.

Утверждение. При любом натуральном n справедливо неравенство .

Доказательство.

. (1)

Докажем, что тогда неравенство справедливо и при n=k+1, т.е.

.

Действительно, не меньше 2 при любом натуральном k. Прибавим к левой части неравенства (1) , а к правой 2. Получим справедливое неравенство , или . Утверждение доказано.

Пример 3. Доказать, что , где >-1, , n - натуральное число, большее 1.

Решение.

При n=2 неравенство справедливо, так как .

Пусть неравенство справедливо при n=k, где k - некоторое натуральное число, т.е.

. (1)

Покажем, что тогда неравенство справедливо и при n=k+1, т.е.

. (2)

Действительно, по условию, , поэтому справедливо неравенство

, (3)

полученное из неравенства (1) умножением каждой части его на . Перепишем неравенство (3) так: . Отбросив в правой части последнего неравенства положительное слагаемое , получим справедливое неравенство (2).

Пример 4. Доказать, что

(1)

где , , n - натуральное число, большее 1.

Решение.

При n=2 неравенство (1) принимает вид


. (2)

Так как , то справедливо неравенство

. (3)

Прибавив к каждой части неравенства (3) по , получим неравенство (2).

Этим доказано, что при n=2 неравенство (1) справедливо.

Пусть неравенство (1) справедливо при n=k, где k - некоторое натуральное число, т.е.

. (4)

Докажем, что тогда неравенство (1) должно быть справедливо и при n=k+1, т.е.

(5)

Умножим обе части неравенства (4) на a+b. Так как, по условию, , то получаем следующее справедливое неравенство:

. (6)

Для того чтобы доказать справедливость неравенства (5), достаточно показать, что

, (7)

или, что то же самое,

. (8)

Неравенство (8) равносильно неравенству

. (9)

Если , то , и в левой части неравенства (9) имеем произведение двух положительных чисел. Если , то , и в левой части неравенства (9) имеем произведение двух отрицательных чисел. В обоих случаях неравенство (9) справедливо.

Этим доказано, что из справедливости неравенства (1) при n=k следует его справедливость при n=k+1.

    Метод математической индукции в применение к другим

задачам

Наиболее естественное применение метода математической индукции в геометрии, близкое к использованию этого метода в теории чисел и в алгебре, - это применение к решению геометрических задач на вычисление. Рассмотрим несколько примеров.

Пример 1. Вычислить сторону правильного - угольника, вписанного в круг радиуса R.

Решение.

При n=2 правильный 2 n - угольник есть квадрат; его сторона . Далее, согласно формуле удвоения


находим, что сторона правильного восьмиугольника , сторона правильного шестнадцатиугольника , сторона правильного тридцатидвухугольника . Можно предположить поэтому, что сторона правильного вписанного 2 n - угольника при любом равна

. (1)

Допустим, что сторона правильного вписанного - угольника выражается формулой (1). В таком случае по формуле удвоения


,

откуда следует, что формула (1) справедлива при всех n.

Пример 2. На сколько треугольников n-угольник (не обязательно выпуклый) может быть разбит своими непересекающимися диагоналями?

Решение.

Для треугольника это число равно единице (в треугольнике нельзя провести ни одной диагонали); для четырехугольника это число равно, очевидно, двум.

Предположим, что мы уже знаем, что каждый k-угольник, где k 1 А 2 …А n на треугольники.

А n

А 1 А 2

Пусть А 1 А k - одна из диагоналей этого разбиения; она делит n-угольник А 1 А 2 …А n на k-угольник A 1 A 2 …A k и (n-k+2)-угольник А 1 А k A k+1 …A n . В силу сделанного предположения, общее число треугольников разбиения будет равно

(k-2)+[(n-k+2)-2]=n-2;

тем самым наше утверждение доказано для всех n.

Пример 3. Указать правило вычисления числа P(n) способов, которыми выпуклый n-угольник может быть разбит на треугольники непересекающимися диагоналями.

Решение.

Для треугольника это число равно, очевидно, единице: P(3)=1.

Предположим, что мы уже определили числа P(k) для всех k 1 А 2 …А n . При всяком разбиении его на треугольники сторона А 1 А 2 будет стороной одного из треугольников разбиения, третья вершина этого треугольника может совпасть с каждой из точек А 3 , А 4 , …,А n . Число способов разбиения n-угольника, при которых эта вершина совпадает с точкой А 3 , равно числу способов разбиения на треугольники (n-1)-угольника А 1 А 3 А 4 …А n , т.е. равно P(n-1). Число способов разбиения, при которых эта вершина совпадает с А 4 , равно числу способов разбиения (n-2)-угольника А 1 А 4 А 5 …А n , т.е. равно P(n-2)=P(n-2)P(3); число способов разбиения, при которых она совпадает с А 5 , равно P(n-3)P(4), так как каждое из разбиений (n-3)-угольника А 1 А 5 …А n можно комбинировать при этом с каждым из разбиений четырехугольника А 2 А 3 А 4 А 5 , и т.д. Таким образом, мы приходим к следующему соотношению:

Р(n)=P(n-1)+P(n-2)P(3)+P(n-3)P(4)+…+P(3)P(n-2)+P(n-1).

С помощью этой формулы последовательно получаем:

P(4)=P(3)+P(3)=2,

P(5)=P(4)+P(3)P(3)+P(4)+5,

P(6)=P(5)+P(4)P(3)+P(3)P(4)+P(5)=14

и т.д.

Так же при помощи метода математической индукции можно решать задачи с графами.

Пусть на плоскости задана сеть линий, соединяющих между собой какие-то точки и не имеющие других точек. Такую сеть линий мы будем называть картой, заданные точки ее вершинами, отрезки кривых между двумя смежными вершинами - границами карты, части плоскости, на которые она разбивается границами - странами карты.

Пусть на плоскости задана некоторая карта. Мы будем говорить, что она правильно раскрашена, если каждая ее страна закрашена определенной краской, причем любые две страны, имеющие между собой общую границу, закрашены в разные цвета.

Пример 4. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

Решение.

При n=1 наше утверждение очевидно.

Предположим, что наше утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками, например черной и белой.

Вступление

Основная часть

1. Полная и неполная индукция

2. Принцип математической индукции

3. Метод математической индукции

4. Решение примеров

5. Равенства

6. Деление чисел

7. Неравенства

Заключение

Список использованной литературы

Вступление

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени. Ну, скажите, что полезного человеку принесут те два-три урока, за которые он услышит пять слов теории, решит пять примитивных задач, и, в результате получит пятёрку за то, что он ничего не знает.

А ведь это так важно - уметь размышлять индуктивно.

Основная часть

По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4< n < 20 представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:

4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5;

14=7+7; 16=11+5; 18=13+5; 20=13+7.

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.

Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев.

Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

Результат, полученный неполной индукцией, остается, однако, лишь гипотезой, пока он не доказан точным математическим рассуждением, охватывающим все частные случаи. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным методом открытия новых истин.

Пусть, например, требуется найти сумму первых n последовательных нечётных чисел. Рассмотрим частные случаи:

1+3+5+7+9=25=5 2

После рассмотрения этих нескольких частных случаев напрашивается следующий общий вывод:

1+3+5+…+(2n-1)=n 2

т.е. сумма n первых последовательных нечётных чисел равна n 2

Разумеется, сделанное наблюдение ещё не может служить доказательством справедливости приведённой формулы.

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам.

Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции. Он заключается в следующем.

Пусть нужно доказать справедливость некоторого утверждения для любого натурального числа n (например нужно доказать, что сумма первых n нечётных чисел равна n 2). Непосредственная проверка этого утверждения для каждого значения n невозможна, поскольку множество натуральных чисел бесконечно. Чтобы доказать это утверждение, проверяют сначала его справедливость для n=1. Затем доказывают, что при любом натуральном значении k из справедливости рассматриваемого утверждения при n=k вытекает его справедливость и при n=k+1.

Тогда утверждение считается доказанным для всех n. В самом деле, утверждение справедливо при n=1. Но тогда оно справедливо и для следующего числа n=1+1=2. Из справедливости утверждения для n=2 вытекает его справедливость для n=2+

1=3. Отсюда следует справедливость утверждения для n=4 и т.д. Ясно, что, в конце концов, мы дойдём до любого натурального числа n. Значит, утверждение верно для любого n.

Обобщая сказанное, сформулируем следующий общий принцип.

Принцип математической индукции.

Если предложение А( n ), зависящее от натурального числа n , истинно для n =1 и из того, что оно истинно для n=k (где k -любое натуральное число), следует, что оно истинно и для следующего числа n=k+1 , то предположение А( n ) истинно для любого натурального числа n .

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом. Если предложение А( n ) истинно при n=p и если А( k ) Þ А( k+1) для любого k>p, то предложение А( n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k)ÞA(k+1).

ПРИМЕР 1

Доказать, что 1+3+5+…+(2n-1)=n 2 .

Решение: 1) Имеем n=1=1 2 . Следовательно,

утверждение верно при n=1, т.е. А(1) истинно.

2) Докажем, что А(k)ÞA(k+1).

Пусть k-любое натуральное число и пусть утверж-дение справедливо для n=k, т.е.

1+3+5+…+(2k-1)=k 2 .

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

1+3+5+…+(2k+1)=(k+1) 2 .

В самом деле,

1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2 .

Итак, А(k)ÞА(k+1). На основании принципа математической индукции заключаем, что предпо-ложение А(n) истинно для любого nÎN.

ПРИМЕР 2

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х¹1

Решение: 1) При n=1 получаем

1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) ис-тинно.

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е.

1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1).

Докажем, что тогда выполняется равенство

1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1).

В самом деле

1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1).

Итак, А(k)ÞA(k+1). На основании принципа математической индукции заключаем, что форму-ла верна для любого натурального числа n.

ПРИМЕР 3

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2.

Решение: 1) При n=3 утверждение спра-


А 3 ведливо, ибо в треугольнике

 А 3 =3(3-3)/2=0 диагоналей;

А 2 А(3) истинно.

2) Предположим, что во всяком

выпуклом k-угольнике имеет-

А 1 ся А k =k(k-3)/2 диагоналей.

А k Докажем, что тогда в выпуклом

(k+1)-угольнике число

диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-уголь-ник. Проведём в нём диагональ A 1 A k . Чтобы под-считать общее число диагоналей этого (k+1)-уголь-ника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k .

Таким образом,

 k+1 = k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2.

Итак, А(k)ÞA(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

ПРИМЕР 4

Доказать, что при любом n справедливо утвер-ждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6.

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1.

Значит, при n=1 утверждение верно.

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6.

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6.

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2 =(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6.

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого на-турального n.

ПРИМЕР 5

Доказать, что для любого натурального n спра-ведливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4.

Решение: 1) Пусть n=1.

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1.

Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k

МБОУ лицей «Технико-экономический»

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Методическая разработка «Метод математической индукции» составлена для обучающихся 10 класса математического профиля.

Первоочередные цели: познакомить обучающихся с методом математической индукции и научить применять его при решении различных задач.

В методической разработке рассматриваются вопросы элементарной математики: задачи на делимость, доказательство тождеств, доказательство неравенств, предлагаются задачи различной степени сложности, в том числе и задачи, предлагаемые на олимпиадах.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. Название метод математической индукции обманчиво – на самом деле этот метод является дедуктивным и дает строгое доказательство утверждениям, угаданным с помощью индукции. Метод математической индукции содействует выявлению связей между различными разделами математики, помогает развитию математической культуры обучающегося.

Определение метода математической индукции. Полная и неполная индукции. Доказательство неравенств. Доказательство тождеств. Решение задач на делимость. Решение различных задач по теме «Метод математической индукции».

ЛИТЕРАТУРА ДЛЯ УЧИТЕЛЯ

1. М.Л.Галицкий. Углубленное изучение курса алгебры и математического анализа. – М.Просвещение.1986.

2. Л.И.Звавич. Алгебра и начала анализа. Дидактические материалы. М.Дрофа.2001.

3. Н.Я.Виленкин. Алгебра и математический анализ. М Просвещение.1995.

4. Ю.В.Михеев. Метод математической индукции. НГУ.1995.

ЛИТЕРАТУРА ДЛЯ ОБУЧАЮЩИХСЯ

1. Н.Я.Виленкин. Алгебра и математический анализ. М Просвещение.1995.

2. Ю.В.Михеев. Метод математической индукции. НГУ.1995.

КЛЮЧЕВЫЕ СЛОВА

Индукция, аксиома, принцип математической индукции, полная индукция, неполная индукция, утверждение, тождество, неравенство, делимость.

ДИДАКТИЧЕСКОЕ ПРИЛОЖЕНИЕ К ТЕМЕ

«МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ».

Урок № 1.

Определение метода математической индукции.

Метод математической индукции является одним из высокоэффективных методом поиска новых результатов и доказательства истинности выдвинутых предположений. Хотя этот метод в математике и не нов, но интерес к нему не ослабевает. Впервые в четком изложении метод математической индукции был применен в 17 веке выдающимся французским ученым Блезом Паскалем при доказательстве свойств числового треугольника, носящего с того времени его имя. Однако идея математической индукции была известна еще древним грекам. В основе метода математической индукции лежит принцип математической индукции, который принимается как аксиома. Идею математической индукции рассмотрим на примерах.

Пример № 1.

Квадрат делится отрезком на две части, затем одна из полученных частей делится на две части и так далее. Определить, на какое число частей разделится квадрат через п шагов?

Решение.

После первого шага мы, по условию, получим 2 части. На втором шаге мы одну часть оставляем без изменений, а вторую – делим на 2 части и получаем 3 части. На третьем шаге мы 2 части оставляем без изменений, а третью делим на две части и получаем 4 части. На четвертом шаге мы 3 части оставляем без изменений, а последнюю часть делим на две части и получаем 5 частей. На пятом шаге мы получим 6 частей. Напрашивается предложение, что через п шагов мы получим (п+1) часть. Но это предложение нужно доказать. Предположим, что через к шагов квадрат разобьется на (к+1) часть. Тогда на (к+1) шаге мы к частей оставим без изменения, а (к+1) часть делим на две части и получим (к+2) части. Замечаете, что так можно рассуждать как угодно долго, до бесконечности. То есть, наше предположение, что через п шагов квадрат будет разбит на (п+1) часть, становится доказанным.

Пример № 2.

У бабушки был внучек, который очень любил варенье, и особенно то, что в литровой банке. Но бабушка не разрешала его трогать. И задумал внучек обмануть бабушку. Он решил съедать каждый день по 1/10 л из этой банки и доливать её водой, тщательно перемешав. Через сколько дней бабушка обнаружит обман, если варенье остается прежним на вид при разбавлении его водой на половину?

Решение.

Найдем, сколько чистого варенья останется в банке через п дней. После первого дня в банке останется смесь, состоящая на 9/10 из варенья и на 1/10 из воды. Через два дня из банки исчезнет 1/10 смеси воды и варенья и останется (в 1л смеси находится 9/10л варенья, в 1/10л смеси находится 9/100лваренья)

9/10 – 9/100=81/100=(9/10) 2 л варенья. На третий день из банки исчезнет 1/10л смеси, состоящей на 81/100 из варенья и на19/100 из воды. В 1л смеси находится 81/100л варенья, в 1/10л смеси 81/1000л варенья. 81/100 – 81/1000=

729/1000=(9/10) 3 л варенья останется через 3 дня, а остальное будет занимать вода. Выявляется закономерность. Через п дней в банке останется (9/10) п л варенья. Но это, опять, только наше предположение.

Пусть к – произвольное натуральное число. Предположим, что через к дней в банке останется (9/10) к л варенья. Посмотрим, что же тогда будет в банке еще через день, то есть, через (к+1) день. Из банки исчезнет 1/10л смеси, состоящей из (9/10) к л варенья и воды. В смеси находится (9/10) к л варенья, в 1/10л смеси (9/10) к+1 л варенья. Теперь мы смело можем заявлять, что через п дней в банке останется (9/10) п л варенья. Через 6 дней в банке будет 531444/1000000л варенья, через 7 дней – 4782969/10000000л варенья, то есть меньше половины.

Ответ: через 7 дней бабушка обнаружит обман.

Попытаемся выделить самое основное в решениях рассмотренных задач. Каждую из них мы начинали решать с рассмотрения отдельных или, как говорят, частных случаев. Затем на основе наших наблюдений, мы высказывали некоторое предположение Р(п) , зависящее от натурального п.

    утверждение проверили, то есть доказали Р(1), Р(2), Р(3);

    предположили, что Р(п) справедливо при п=к и вывели, что тогда оно будет справедливо и при следующем п, п=к+1.

А затем рассуждали примерно так: Р(1) верно, Р(2) верно, Р(3) верно, Р(4) верно,…, значит верно Р(п).

Принцип математической индукции.

Утверждение Р(п) , зависящее от натурального п , справедливо при всех натуральных п , если

1) доказана справедливость утверждения при п=1;

2) из предположения справедливости утверждения Р(п) при п=к следует

справедливость Р(п) при п=к+1.

В математике принцип математической индукции выбирается, как правило, в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства. Метод доказательства по принципу математической индукции обычно называется методом математической индукции. Заметим, что этот метод широко применяется при доказательстве теорем, тождеств, неравенств при решении задач на делимость и многих других задач.

Урок № 2

Полная и неполная индукция.

В случае, когда математическое утверждение касается конечного числа объектов, его можно доказать, проверяя для каждого объекта, например, утверждение «Каждое двузначное четное число является суммой двух простых чисел». Метод доказательства, при котором мы проверяем утверждение для конечного числа случаев, называется полной математической индукцией. Этот метод применим сравнительно редко, так как утверждения чаще всего рассматриваются на бесконечных множествах. Например, теорема «Любое четное число равно сумме двух простых чисел» до сих пор ни доказана, ни опровергнута. Если бы мы даже проверили эту теорему для первого миллиарда, это бы ни на шаг не приблизило бы нас к её доказательству.

В естественных науках применяют неполную индукцию, проверяя эксперимент несколько раз, переносят результат на все случаи.

Пример № 3.

Угадаем с помощью неполной индукции формулу для суммы кубов натуральных чисел.

Решение.

1 3 =1; 1 3 +2 3 =(1+2) 2 ; 1 3 +2 3 +3 3 =(1+2+3) 2 ; 1 3 +2 3 +3 3 +4 3 =(1+2+3+4) 2 ;

1 3 +2 3 +3 3 +4 3 +5 3 =(1+2+3+4+5) 2 ; …; 1 3 +2 3 +…+n 3 =(1+2+…+n) 2 .

Доказательство.

Пусть верно для п=к.

Докажем, что верно для п=к+1.

Вывод: формула для суммы кубов натуральных чисел верна для любого натурального п.

Пример № 4.

Рассмотрите равенства и догадайтесь, к какому общему закону подводят эти примеры.

Решение.

1=0+1

2+3+4=1+8

5+6+7+8+9=8+27

10+11+12+13+14+15+16=27+64

17+18+19+20+21+22+23+24+25=64+125

……………………………………………………………..

Пример № 5.

Запишите в виде суммы следующие выражения:

1)
2)
3)
; 4)
.

греческая буква «сигма».

Пример № 6.

Запишите следующие суммы с помощью знака
:

2)

Пример № 7.

Запишите следующие выражения в виде произведений:

1)

3)
4)

Пример № 8.

Запишите следующие произведения с помощью знака

(прописная греческая буква «пи»)

1)
2)

Пример № 9.

Вычисляя значение многочлена f ( n )= n 2 + n +11 , при п=1,2,3,4.5,6,7 можно сделать предположение, что при любом натуральном п число f ( n ) простое.

Верно ли это предположение?

Решение.

Если каждое слагаемое суммы делится на число, то сумма делится на это число,
не является простым числом при любом натуральном п.

Разбор конечного числа случаев играет важную роль в математике: не давая доказательства того или иного утверждения, он помогает угадать правильную формулировку этого утверждения, если она ещё неизвестна. Именно так член Петербургской академии наук Гольдбах пришел к гипотезе, что любое натуральное число, начиная с двух, является суммой не более чем трёх простых чисел.

Урок № 3.

Метод математической индукции позволяет доказывать различные тождества.

Пример № 10. Докажем, что для всех п выполняется тождество

Решение.

Положим


Нам надо доказать, что



Докажем, что Тогда из истинности тождества

следует истинность тождества

По принципу математической индукции доказана истинность тождества при всех п .

Пример № 11.

Докажем тождество

Доказательство.


почленно получившиеся равенства.

;
. Значит, данное тождество истинно для всех
п .

Урок № 4.

Доказательство тождеств методом математической индукции.

Пример № 12. Докажем тождество

Доказательство.


Применяя принцип математической индукции, доказали, что равенство верно при всех п .

Пример № 13. Докажем тождество

Доказательство.


Применяя принцип математической индукции, доказали, что утверждение верно при любом натуральном п .

Пример № 14. Докажем тождество

Доказательство.


Пример № 15. Докажем тождество

1) п=1;

2) для п=к выполняется равенство

3) докажем, что равенство выполняется для п=к+1:

Вывод: тождество справедливо для любого натурального п.

Пример № 16. Докажем тождество

Доказательство.

Если п=1 , то

Пусть тождество выполняется при п=к.

Докажем, что тождество выполняется при п=к+1.



Тогда тождество справедливо для любого натурального п .

Урок № 5.

Доказательство тождеств методом математической индукции.

Пример № 17. Докажем тождество

Доказательство.

Если п=2 , то получаем верное равенство:

Пусть равенство верно при п=к:

Докажем справедливость утверждения при п=к+1.

Согласно принципу математической индукции, тождество доказано.

Пример № 18. Докажем тождество
при п≥2.

При п=2 это тождество перепишется в очень простом виде

и, очевидно, верно.

Пусть при п=к действительно

.

Докажем справедливость утверждения при п=к+1, то есть выполняется равенство: .

Итак, мы доказали, что тождество верно при любом натуральном п≥2.

Пример № 19. Докажем тождество

При п=1 получим верное равенство:

Предположим, что при п=к получаем также верное равенство:

Докажем, что наблюдается справедливость равенства при п=к+1:

Тогда тождество справедливо при любом натуральном п .

Урок № 6.

Решение задач на делимость.

Пример № 20. Доказать методом математической индукции, что

делится на 6 без остатка.

Доказательство.

При п=1 наблюдается деление на 6 без остатка,
.

Пусть при п=к выражение
кратно
6.

Докажем, что при п=к+1 выражение
кратно
6 .

Каждое слагаемое кратно 6 , следовательно сумма кратна 6 .

Пример № 21.
на
5 без остатка.

Доказательство.

При п=1 выражение делится без остатка
.

Пусть при п=к выражение
также делится на
5 без остатка.

При п=к+1 делится на 5 .

Пример № 22. Доказать делимость выражения
на
16.

Доказательство.

При п=1 кратно 16 .

Пусть при п=к
кратно
16.

При п=к+1

Все слагаемые делятся на 16: первое – очевидно, второе по предположению, а в третьем – в скобках стоит четное число.

Пример № 23. Доказать делимость
на
676.

Доказательство.

Предварительно докажем, что
делится на
.

При п=0
.

Пусть при п=к
делится на
26 .

Тогда при п=к+1 делится на 26 .

Теперь проведем доказательство утверждения, сформулированного в условии задачи.

При п=1 делится на 676.

При п=к верно, что
делится на
26 2 .

При п=к+1 .

Оба слагаемых делятся на 676 ; первое – потому, что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции.

Урок № 7.

Решение задач на делимость.

Пример № 24.

Доказать, что
делится на 5 без остатка.

Доказательство.

При п=1
делится на
5.

При п=к
делится на
5 без остатка.

При п=к+1 каждое слагаемое делится на 5 без остатка.

Пример № 25.

Доказать, что
делится на 6 без остатка.

Доказательство.

При п=1
делится на
6 без остатка.

Пусть при п=к
делится на
6 без остатка.

При п=к+1 делится на 6 без остатка, так как каждое слагаемое делится на 6 без остатка: первое слагаемое – по предположению индукции, второе – очевидно, третье – потому, что
четное число.

Пример № 26.

Доказать, что
при делении на 9 дает остаток 1 .

Доказательство.

Докажем, что
делится на 9 .

При п=1
делится на 9 . Пусть при п=к
делится на
9 .

При п=к+1 делится на 9 .

Пример № 27.

Доказать, что делится на 15 без остатка.

Доказательство.

При п=1 делится на 15 .

Пусть при п=к делится на 15 без остатка.

При п=к+1

Первое слагаемое кратно 15 по предположению индукции, второе слагаемое кратно 15 – очевидно, третье слагаемое кратно 15 , так как
кратно
5 (доказано в примере № 21), четвертое и пятое слагаемые также кратны 5 , что очевидно, тогда сумма кратна 15 .

Урок № 8-9.

Доказательство неравенств методом математической индукции

Пример № 28.
.

При п=1 имеем
- верно.

Пусть при п=к
- верное неравенство.

При п=к+1

Тогда неравенство справедливо для любого натурального п .

Пример № 29. Доказать, что справедливо неравенство
при любом п .

При п=1 получим верное неравенство 4 >1.

Пусть при п=к справедливо неравенство
.

Докажем, что при п=к+1 справедливо неравенство

Для любого натурального к наблюдается неравенство .

Если
при
то



Пример № 30.

при любом натуральном п и любом

Пусть п=1
, верно.

Предположим, что неравенство выполняется при п=к :
.

При п=к+1

Пример № 31. Доказать справедливость неравенства

при любом натуральном п .

Докажем сначала, что при любом натуральном т справедливо неравенство

Умножим обе части неравенства на
. Получим равносильное неравенство или
;
; - это неравенство выполняется при любом натуральном т .

При п=1 исходное неравенство верно
;
;
.

Пусть неравенство выполняется при п=к:
.

При п=к+1

Урок № 10.

Решение задач по теме

Метод математической индукции.

Пример № 32. Доказать неравенство Бернулли.

Если
, то для всех натуральных значений п выполняется неравенство

Доказательство.

При п=1 доказываемое неравенство принимает вид
и, очевидно, справедливо. Предположим, что оно верно при
п=к , то есть что
.

Так как по условию
, то
, и потому неравенство не изменит смысла при умножении обеих его частей на
:

Так как
, то получаем, что

.

Итак, неравенство верно при п=1 , а из его истинности при п=к следует, что оно истинно и при п=к+1. Значит, в силу математической индукции оно имеет место для всех натуральных п.

Например,

Пример № 33. Найти все натуральные значения п , для которых справедливо неравенство

Решение.

При п=1 неравенство справедливо. При п=2 неравенство также справедливо.

При п=3 неравенство уже не выполняется. Лишь при п=6 неравенство выполняется, так что за базис индукции можно взять п=6.

Предположим, что неравенство справедливо для некоторого натурального к:

Рассмотрим неравенство

Последнее неравенство выполняется, если
Контрольная работа по теме п=1 задана рекуррентно: п≥5 , где п - -натуральное число.