Возбуждение. Глава X

Раздражители

По природе раздражители подразделяют на:
• физические (звук, свет, температура, вибрация, осмотическое давление), особое значение для биологических систем имеют электрические раздражители;
• химические (ионы, гормоны, нейромедиаторы, пептиды, ксенобиотики);
• информационные (голосовые команды, условные знаки, условные стимулы).

По биологическому значению раздражители подразделяют на:
• адекватные – раздражители, для восприятия которых биологическая система имеет специальные приспособления;
• неадекватные – раздражители, не соответствующие природной специализации рецепторных клеток, на которые они действуют.

Раздражитель вызывает возбуждение только в том случае, если он достаточно силен. Порог возбуждения – минимальная сила раздражителя, достаточная для того, чтобы вызвать возбуждение клетки. Выражение «порог возбуждения» имеет несколько синонимов: порог раздражения, пороговая сила раздражителя, порог силы.

Возбуждение как активная реакция клетки на раздражитель

Реакция клетки на внешнее воздействие (раздражение) отличается от реакции небиологических систем следующими особенностями:
• энергией для реакции клетки служит не энергия раздражителя, а энергия, образующаяся в результате метаболизма в самой биологической системе;
• сила и форма реакции клетки не определяется силой и формой внешнего воздействия (если сила раздражителя выше пороговой).

В некоторых специализированных клетках реакция на раздражитель проявляется особенно интенсивно. Такую интенсивную реакцию называют возбуждением. Возбуждение – активная реакция специализированных (возбудимых) клеток на внешнее воздействие, проявляющаяся в том, что клетка начинает выполнять присущие ей специфические функции.

Возбудимая клетка может находиться в двух дискретных состояниях:
• состоянии покоя (готовность к реагированию на внешнее воздействие, совершение внутренней работы);
• состоянии возбуждения (активное выполнение специфических функций, совершение внешней работы).

В организме существует 3 типа возбудимых клеток:
• нервные клетки (возбуждение проявляется генерацией электрического импульса);
• мышечные клетки (возбуждение проявляется сокращением);
• секреторные клетки (возбуждение проявляется выбросом в межклеточное пространство биологически активных веществ).

Возбудимость – способность клетки переходить из состояния покоя в состояние возбуждения при действии раздражителя. Разные клетки имеют различную возбудимость. Возбудимость одной и той же клетки меняется в зависимости от ее функционального состояния.

Возбудимая клетка в состоянии покоя

Мембрана возбудимой клетки поляризована. Это означает, что имеется постоянная разность потенциалов между внутренней и наружной поверхностью клеточной мембраны, которую называют мембранный потенциал (МП). В состоянии покоя величина МП составляет –60…–90 мВ (внутренняя сторона мембраны заряжена отрицательно относительно наружной). Значение МП клетки в состоянии покоя называют потенциалом покоя (ПП). МП клетки можно измерять, разместив один электрод внутри, а другой снаружи клетки (рис. 1 А) .

Уменьшение МП относительно его нормального уровня (ПП) называют деполяризацией , а увеличение – гиперполяризацией . Под реполяризацией понимают восстановление исходного уровня МП после его изменения (см. рис. 1 Б).

Электрические и физиологические проявления возбуждения

Рассмотрим различные проявления возбуждения на примере раздражения клетки электрическим током (рис. 2).

При действии слабых (подпороговых) импульсов электрического тока в клетке развивается электротонический потенциал. Электротонический потенциал (ЭП) – сдвиг мембранного потенциала клетки, вызываемый действием постоянного электрического тока . ЭП есть пассивная реакция клетки на электрический раздражитель; состояние ионных каналов и транспорт ионов при этом не изменяется. ЭП не проявляется физиологической реакцией клетки. Поэтому ЭП не является возбуждением.

При действии более сильного подпорогового тока возникает более пролонгированный сдвиг МП – локальный ответ. Локальный ответ (ЛО) – активная реакция клетки на электрический раздражитель, однако состояние ионных каналов и транспорт ионов при этом изменяется незначительно. ЛО не проявляется заметной физиологической реакцией клетки. ЛО называют местным возбуждением , так как это возбуждение не распространяется по мембранам возбудимых клеток.

При действии порогового и сверхпорогового тока в клетке развивается потенциал действия (ПД). ПД характеризуется тем, что значение МП клетки очень быстро уменьшается до 0 (деполяризация), а затем мембранный потенциал приобретает положительное значение (+20…+30 мВ), т. е. внутренняя сторона мембраны заряжается положительно относительно наружной. Затем значение МП быстро возвращается к исходному уровню. Сильная деполяризация клеточной мембраны во время ПД приводит к развитию физиологических проявлений возбуждения (сокращение, секреция и др.). ПД называют распространяющимся возбуждением , поскольку, возникнув в одном участке мембраны, он быстро распространяется во все стороны.

Механизм развития ПД практически одинаков для всех возбудимых клеток. Механизм сопряжения электрических и физиологических проявлений возбуждения различен для разных типов возбудимых клеток (сопряжение возбуждения и сокращения, сопряжение возбуждения и секреции).

Устройство клеточной мембраны возбудимой клетки

В механизмах развития возбуждения участвуют 4 вида ионов: K+ , Na+ , Ca++ , Cl – (ионы Ca++ участвуют в процессах возбуждения некоторых клеток, например кардиомиоцитов, а ионы Cl – важны для развития торможения). Мембрана клетки, представляющая собой липидный бислой, непроницаема для этих ионов. В мембране существуют 2 типа специализированных интегральных белковых систем, которые обеспечивают транспорт ионов через клеточную мембрану: ионные насосы и ионные каналы.

Ионные насосы и трансмембранные ионные градиенты

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+), Ca++ помпу (откачивает из клетки Ca++), Cl– помпу (откачивает из клетки Cl –).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:
• концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);
• концентрация K+ внутри клетки выше, чем снаружи.

Ионные каналы

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрации ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы
• пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
• всегда находятся в открытом состоянии.

Селективные каналы обладают следующими свойствами:
• пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
• могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

Избирательная проницаемость селективного канала обеспечивается селективным фильтром , который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работой воротного механизма , который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт) (рис. 3). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня МП канал возвращается в исходное (закрытое) состояние.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:
• хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда;
• потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение МП (деполяризация) клеточной мембраны до определенного уровня, который называют критическим уровнем деполяризации (КУД).

Механизм формирования потенциала покоя

Мембранный потенциал покоя образуется главным образом благодаря выходу К+ из клетки через неселективные ионные каналы. Утечка из клетки положительно заряженных ионов приводит к тому, что внутренняя поверхность мембраны клетки заряжается отрицательно относительно наружной.

Мембранный потенциал, возникающий в результате утечки К+ , называют «равновесным калиевым потенциалом» (Ек ). Его можно рассчитать по равнению Нернста

где R – универсальная газовая постоянная,
Т – температура (по Кельвину),
F – число Фарадея,
[К+] нар – концентрация ионов К+ снаружи клетки,
[К+] вн – концентрация ионов К+ внутри клетки.

ПП, как правило, очень близок к Ек, но не точно равен ему. Эта разница объясняется тем, что свой вклад в формирование ПП вносят:

• поступление в клетку Na+ и Cl– через неселективные ионные каналы; при этом поступление в клетку Cl– дополнительно гиперполяризует мембрану, а поступление Na+ – дополнительно деполяризует ее; вклад этих ионов в формирование ПП невелик, так как проницаемость неселективных каналов для Cl– и Na + в 2,5 и 25 раза ниже, чем для К+ ;

• прямой электрогенный эффект Na+ /К+ ионного насоса, возникающий в том случае, если ионный насос работает асимметрично (количество переносимых в клетку ионов K+ не равно количеству выносимых из клетки ионов Na+).

Механизм развития потенциала действия

В потенциале действия выделяют несколько фаз (рис. 4):

• фаза деполяризации;
• фаза быстрой реполяризации;
• фаза медленной реполяризации (отрицательный следовый потен­циал);
• фаза гиперполяризации (положительный следовый потенциал).

Фаза деполяризации . Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциалчувствительных Na+-каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

Фаза быстрой и медленной реполяризации . В результате деполяризации мембраны происходит открытие потенциалчувствительных К+ -каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется.

Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+ / K+ помпы.

Овершут – период времени, в течение которого мембранный потенциал имеет положительное значение.

Пороговый потенциал – разность между мембранным потенциалом покоя и критическим уровнем деполяризации. Величина порогового потенциала определяет возбудимость клетки – чем больше пороговый потенциал, тем меньше возбудимость клетки.

Изменение возбудимости клетки при развитии возбуждения

Если принять уровень возбудимости клетки в состоянии физиологического покоя за норму, то в ходе развития цикла возбуждения можно наблюдать ее колебания. В зависимости от уровня возбудимости выделяют следующие состояния клетки (см. рис. 4).

• Супернормальная возбудимость (экзальтация ) – состояние клетки, в котором ее возбудимость выше нормальной. Супернормальная возбудимость наблюдается во время начальной деполяризации и во время фазы медленной реполяризации. Повышение возбудимости клетки в эти фазы ПД обусловлено снижением порогового потенциала по сравнению с нормой.

• Абсолютная рефрактерность – состояние клетки, в котором ее возбудимость падает до нуля. Никакой, даже самый сильный, раздражитель не может вызвать дополнительного возбуждения клетки. Во время фазы деполяризации клетка невозбудима, поскольку все ее Na+ -каналы уже находятся в открытом состоянии.

• Относительная рефрактерность – состояние, в котором возбуди­мость клетки значительно ниже нормальной; только очень сильные раздражители могут вызвать возбуждение клетки. Во время фазы реполяризации каналы возвращаются в закрытое состояние и возбудимость клетки постепенно восстанавливается.

• Субнормальная возбудимость характеризуется незначительным снижением возбудимости клетки ниже нормального уровня. Это уменьшение возбудимости происходит вследствие возрастания порогового потенциала во время фазы гиперполяризации.

1. Общие или неспецифические признаки:

Наличие потенциала действия;

Изменение обмена веществ в возбудимой ткани, как правило, повышение;

Изменение температуры – повышение.

2. Частные или специфические признаки:

Для мышечной ткани – сокращение;

Для нервной – генерация и проведение импульса (потенциала действия);

Для железистой – синтез и секреция вещества, вырабатываемого ею.

Раздражимость – способность отвечать на раздражение изменением обмена веществ. Реагировать на воздействие различным образом, в зависимости от того, в каком состоянии находится.

Состояния тканей могут быть следующими:

Состояние физиологического покоя.

Состояние возбуждения.

Состояние торможения.

Возбудимость - свойство нервной, мышечной, железистой ткани отвечать на раздражение специфической реакцией – возбуждением.

Возбуждение – основной физиологический процесс, которым организм отвечает на раздражение. Возбуждение - в широком биологическом смысле – временное повышение жизнедеятельности организма или его частей, наступающее при изменении условий существования. Возбудимость – свойство. Возбуждение – процесс.

При возбуждении наблюдается:

Измиенение обмена веществ (повышается потребление кислорода и усиливается выделение углекислоты).



Меняется обмен энергии (выделяется тепло).

Меняется электрическое состояние мембраны клетки (формируется потенциал действия).

Клетка выполняет свою специфическую функцию: сокращается мышечное волокно, выделяется секрет, генерируется нервный импульс в нервной клетке.

О состоянии покоя в возбудимых тканях говорят в том случае, когда на ткань не действует раздражитель из внешней или внутренней среды. При этом наблюдается относительно постоянный уровень метаболизма, нет видимого функционального отправления ткани. Состояние активности наблюдается в том случае, когда на ткань действует раздражитель, при этом изменяется уровень метаболизма, и наблюдается функциональное отправление ткани.

Основные формы активного состояния возбудимой ткани – возбуждение и торможение.

Возбуждение – это активный физиологический процесс, который возникает в ткани под действием раздражителя, при этом изменяются физиологические свойства ткани, и наблюдается функциональное отправление ткани. Возбуждение характеризуется рядом признаков:

1) специфическими признаками, характерными для определенного вида тканей;

2) неспецифическими признаками, характерными для всех видов тканей (изменяются проницаемость клеточных мембран, соотношение ионных потоков, заряд клеточной мембраны, возникает потенциал действия, изменяющий уровень метаболизма, повышается потребление кислорода и увеличивается выделение углекислого газа).

По характеру электрического ответа существует две формы возбуждения:

1) местное, нераспространяющееся возбуждение (локальный ответ). Оно характеризуется тем, что:

а) отсутствует скрытый период возбуждения;

б) возникает при действии любого раздражителя, т. е. нет порога раздражения, имеет градуальный характер;

в) отсутствует рефрактерность, т. е. в процессе возникновения возбуждения возбудимость ткани возрастает;

г) затухает в пространстве и распространяется на короткие расстояния, т. е. характерен декремент;

2) импульсное, распространяющееся возбуждение. Оно характеризуется:

а) наличием скрытого периода возбуждения;

б) наличием порога раздражения;

в) отсутствием градуального характера (возникает скачкообразно);

г) распространением без декремента;

д) рефрактерностью (возбудимость ткани уменьшается).

Торможение – активный процесс, возникает при действии раздражителей на ткань, проявляется в подавлении другого возбуждения. Следовательно, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответ.

Выделяют два типа торможения:

1) первичное, для возникновения которого необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения;

2) вторичное, которое не требует специальных тормозных структур. Оно возникает в результате изменения функциональной активности обычных возбудимых структур.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выражены. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

Общим свойством всех живых тканей является раздражимость, т.е. способность под влиянием внешних воздействий изменять обмен веществ и энергии . Среди всех живых тканей организма особо выделяют возбудимые ткани (нервную, мышечную и железистую), реакция которых на раздражение связана с возникновением специальных форм активности - электрических потенциалов и других явлений .

Основными функциональными характеристиками возбудимых тканей являются возбудимость и лабильность.

Возбудимость - свойство возбудимых тканей отвечать на раздражение специфическим процессом возбуждения. Этот процесс включает электрические, ионные, химические и тепловые изменения, атакже специфические проявления: в нервных клетках - импульсы возбуждения, в мышечных - сокращение или напряжение, в железистых - выделение определенных веществ. Он представляет собой переход из состояния физиологического покоя в деятельное состояние. Для нервной и мышечной ткани характерна также способность передавать это активное состояние соседним участкам - т.е. проводимость .

Возбудимые ткани характеризуются двумя основными нервными процессами - возбуждением и торможением. Торможение - это активная задержка процесса возбуждения. Взаимодействие этих двух процессов обеспечивает координацию нервной деятельности в целостном организме.

Различают местное (или локальное) возбуждение и распространяющееся. Местное возбуждение представляет незначительные изменения в поверхностной мембране клеток, а распространяющееся возбуждение связано с передачей всего комплекса физиологических изменений (импульса возбуждения) вдоль нервной или мышечной ткани. Для измерения возбудимости пользуются определением порога, т.е. минимальной величины раздражения, при которой возникает распространяющееся возбуждение. Величина порога зависит от функционального состояния ткани и от особенностей раздражителя, которым может быть любое изменение внешней среды (электрическое, тепловое, механическое и пр.). Чем выше порог, тем ниже возбудимость и наоборот . Возбудимость может повышаться в процессе выполнения физических упражнений оптимальной длительности и интенсивности (например, под влиянием разминки, входе врабатывания) и снижаться при утомлении, развитии перетренированности.

Лабильность - скорость протекания процесса возбуждения в нервной и мышечной ткани (лат. лабилис - подвижный). Понятие лабильности или функциональной подвижности было выдвинуто Н. Е. Введенским в 1892 г. В качестве одной из мер лабильности Н. Е. Введенский предложил максимальное количество волн возбуждения (электрических потенциалов действия), которое может воспроизводиться тканью в 1с в соответствии с ритмом раздражения. Лабильность характеризует скоростные свойства ткани. Она может повышаться под влиянием раздражений, тренировки, особенно у спортсменов при развитии качества быстроты.

№12 Раздражители, их виды.

Существует 3 классификации:

1. По природе:

Физические (электрический ток, мембранные потенциалы, свет, звук, температура);

Химические (биологически активные вещества, гормоны, медиаторы);

Физико-химические (изменение осмотического давления плазмы крови).

2. По силе:

Пороговые;

Подпороговые;

Надпороговые.

Пороговый раздражитель – это раздражитель минимальной силы способный вызвать возбуждение в виде потенциала действия.

3. По биологическому значению:

Неадекватные;

Адекватные.

Адекватный раздражитель – это раздражитель, к которому возбудимая ткань приспособилась в процессе эволюции. (сетчатка глаза и кванты света).

Организм человека обладает выраженной способностью адаптироваться к постоянно меняющимся условиям внешней среды. В основе приспособительных реакций организма лежит универсальное свойство живой ткани - раздражимость - способность отвечать на действие раздражающих факторов изменением структурных и функциональных свойств. Раздражимостью обладают все ткани животных и растительных организмов. В процессе эволюции происходила постепенная дифференциация тканей, осуществляющих приспособительную деятельность организма. Раздражимость этих тканей достигла наивысшего развития и трансформировалась в новое свойство - возбудимость. Под этим термином понимают способность ткани отвечать на раздражение специализированной реакцией - возбуждением. Возбуждение - это сложный биологический процесс, который характеризуется специфическим изменением процессов обмена веществ, теплообразования, временной деполяризацией мембраны клеток и проявляющийся специализированной реакцией ткани (сокращение мышцы, отделение секрета железой и т. д.). Возбудимостью обладают нервная, мышечная и секреторная ткани, их объединяют в понятие "возбудимые ткани". Возбудимость различных тканей неодинакова. Мерой возбудимости является порог раздражения - минимальная сила раздражителя, которая способна вызвать возбуждение. Менее сильные раздражители называются подпороговыми, а более сильные - сверхпороговыми. Раздражителем живой клетки может быть любое изменение внешней или внутренней среды, если оно достаточно велико, возникло достаточно быстро и продолжается достаточно долго.

Классификация раздражителей . Все раздражители по их природе можно разделить на три группы:

физические (механические, температурные, звуковые, световые, электрические);

химические (щелочи, кислоты, гормоны, продукты обмена веществ и др.);

физико-химические (изменение осмотического давления, рН среды, ионного состава и др.).

По степени приспособленности биологических структур к их восприятию раздражители делятся на адекватные и неадекватные.

Адекватными называются раздражители, к восприятию которых биологическая структура специально приспособлена в процессе эволюции. Например, адекватным раздражителем для фоторецепторов является видимый свет, для барорецепторов - изменение давления, для скелетной мышцы - нервный импульс и т. д.

Неадекватными называются такие раздражители, которые действуют на структуру, специально не приспособленную для их восприятия. Например, адекватным раздражителем для скелетной мышцы является нервный импульс, но мышца может возбуждаться и при воздействии электрического тока, механического удара и др. Все эти раздражители для скелетной мышцы являются неадекватными и их пороговая сила в сотни и более раз превышает пороговую силу адекватного раздражителя.

№13 Локальный ответ, его свойства.

Локальный ответ – колебательный затухающий переходный процесс. Уровень деполяризации допороговый.

Свойства локального ответа:

Подчиняется закону силовых отношений, с увеличение силы раздражителя увеличивается амплитуда локального ответа. (не достигает КУД);

Локальный ответ не распространяется;

Локальный ответ способен суммироваться;

Возникает при действии подпорогового раздражителя.

№ 14 Потенциал действия, его ионные механизмы.

I фаза потенциала действия – фаза медленной деполяризации.

При действии порогового или подпорогового раздражителя открываются ионные каналы, и Na начинает поступать внутрь клетки.

II фаза – фаза быстрой деполяризации.

Открываются все натриевые каналы, и Na быстро поступает внутрь клетки.

III фаза – пик потенциала действия = овершут = реверсия потенциала.

Меняется знак с – на +. При этом закрываются ионные каналы, и концентрации ионов К и Na внутри и снаружи клетки будут уравновешены.

IV фаза – фаза реполяризации.

После реверсии потенциала включается электрозависимый Натрий-калиевый насос. Он с использованием энергии АТФ начинает против градиента концентрации выкачивать Na из клетки и закачивать в клетку К. На 1 молекулу К выкачиваются 4 молекулы Na.

Возвращает заряд мембраны к исходному знаку. Натрий-калиевый насос вступает в действие и восстанавливает заряд клеточной мембраны. Полного восстановления мембранного потенциала не происходит.

V фаза – фаза следовых потенциалов = следовой гиперполяризации.

В процессе восстановительных реакций на клеточной мембране регистрируются следовые потенциалы – положительный и отрицательный. Следовые потенциалы являются непостоянными компонентами потенциала действия. Отрицательный следовой потенциал – следовая деполяризация в результате повышенной проницаемости мембраны к ионам Na, что тормозит процесс реполяризации. Положительный следовой потенциал возникает при гиперполяризации клеточной мембраны в процессе восстановления клеточного заряда за счет выхода ионов калия и работы натрий-калиевого насоса.

Потенциал действия – это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.

При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К – в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный.

Компоненты потенциала действия:

1) локальный ответ;

2) высоковольтный пиковый потенциал (спайк);

3) следовые колебания:

а) отрицательный следовой потенциал;

б) положительный следовой потенциал.

Локальный ответ.

Пока раздражитель не достиг на начальном этапе 50–75 % от величины порога, проницаемость клеточной мембраны остается неизменой, и электрический сдвиг мембранного потенциала объясняется раздражающим агентом. Достигнув уровня 50–75 %, открываются активационные ворота (m-ворота) Na-каналов, и возникает локальный ответ.

Ионы Na путем простой диффузии поступают в клетку без затрат энергии. Достигнув пороговой силы, мембранный потенциал снижается до критического уровня деполяризации (примерно 50 мВ). Критический уровень деполяризации – это то количество милливольт, на которое должен снизиться мембранный потенциал, чтобы возник лавинообразный ход ионов Na в клетку. Если сила раздражения недостаточна, то локального ответа не происходит.

В основе нервной деятельности лежат два процесса - возбуждение и торможение.

Возбуждение определенных участков нервных центров центральной нервной системы проявляется в соответствующих действиях (рефлексах) собаки. Например, при воздействии звукового раздражителя собака прислушивается, при появлении запаха - принюхивается и т. д. Большинство условных рефлексов вырабатывается у собаки в процессе дрессировки на основе процесса возбуждения. Эти рефлексы называются положительными условными рефлексами .

Торможение - это активный процесс нервной деятельности, противоположный возбуждению и вызывающий задержку рефлексов. Условные рефлексы, которые вырабатываются у собаки на основе использования тормозного процесса, называются тормозными, или отрицательными . Ярким примером такого рефлекса является запрещение нежелательных действий собаки по команде.

Академик Павлов установил определенные закономерности в проявлении этих процессов, имеющих большое значение для дрессировки. Закономерности эти заключаются в следующем. Если в каком-либо участке коры головного мозга возникает очаг возбуждения или торможения, то возбуждение или торможение непременно будет вначале распространяться из пункта своего возникновения, захватывая соседние участки коры (процесс иррадиации ). Например, для того чтобы добиться от собаки лая, дрессировщик может привязать ее и уйти. Уход дрессировщика сильно возбудит собаку (иррадиация возбуждения) и она начнет лаять.

Концентрацией называется обратное явление, когда возбуждение или торможение, наоборот, сосредоточивается на определенном участке нервной системы. Благодаря этому, например, после нескольких повторений собака приучается подавать голос только по команде, без побочных действий и общего возбуждения.

Возникновение в коре головного мозга процесса, противоположного по своему значению первоначально возникшему, называется индукцией (положительная индукция ). Например, после того как собаку сильно дразнили, вызывая возбуждение активно-оборонительного рефлекса, она может более жадно поедать пищу и т. д. Но возможно и обратное явление, когда возбуждение какого-либо рефлекса вызывает торможение другого (отрицательная индукция ). Так, при появлении ориентировочного рефлекса собака часто перестает реагировать на команды дрессировщика.

Дрессировщик должен всегда учитывать явление торможения в нервной деятельности собаки. Торможение проявляется в задержке того или другого рефлекса и может быть условным, или активным, и безусловным, или пассивным . Активное торможение возникает у собак в процессе дрессировки. Появление этого вида торможения прежде всего зависит от действий дрессировщика.

Различают следующие виды активного торможения: угасательное, дифференцировочное и запаздывающее (рис. 24).

1. Раздражители и раздражимость.

2. Возбудимость и возбуждение.

3. Биоэлектрические явления в возбудимых тканях. Мембранный потенциал покоя.

4. Потенциал действия.

5. Законы раздражения.

6. Лабильность. Парабиоз.

Раздражители и раздражимость. На живой организм постоянно действуют различные раздражители (свет, звук, различные запахи и др.). Воздействие раздражителя на организм называется раздражением. Организм воспринимает раздражение благодаря особой способности – раздражимости. Раздражимость – это способность клеток, тканей усиливать или уменьшать активность в ответ на воздействие раздражителей. Условно раздражители можно подразделить на три группы: физические, химические и физико-химические. К физическим раздражителям относятся механические, электрические, температурные, световые звуковые. К химическим относятся гормоны, лекарственные вещества и др. К физико-химическим раздражителям относятся изменения осмотического давления и рН крови.

К действию одних раздражителей орган специально приспособлен. Такие раздражители называют адекватными. Неадекватными будут такие раздражители, к воздействию которых данная клетка или ткань не приспособлена. Так для глаза адекватным раздражителем будут световые лучи, а неадекватным звуковые волны.

По силе раздражители подразделяются на подпороговые, пороговые и надпороговые. Пороговый раздражитель характеризуется минимальной силой, достаточной для того чтобы вызвать минимальный специфический эффект в раздражаемой ткани. Подпороговый раздражитель вызывает лишь местную реакцию. Его силы недостаточно для вызывания специфического эффекта. Нпротив, надпороговые раздражители обладают большой силой и вызывают самую большую реакцию.

Возбудимость и возбуждение. Некоторые ткани организма (нервная, мышечная) относятся к возбудимым т. е. они обладают способностью отвечать на раздражение - возбуждением. Возбуждение - это специфическая форма реагирования возбудимой клетки или ткани на действие раздражителя. Возбуждение характеризуется как специфическими, так и неспецифическими признаками. К специфическим признакам относят сокращение мышцы, выделение железой секрета. Неспецифические признаки возбуждения – это повышение обмена веществ, усиление теплопродукции изменение электрического состояния клеточной мембраны.

Биоэлектрические явления в возбудимых тканях. Биоэлектрические явления (животное электричество) было открыто в 1791 году итальянским ученым Л. Гальвани. Современные данные происхождения биоэлектрических явлений были получены в 1952 году А. Ходжикиным, А. Хаксли и Б. Катцем в исследованиях, проведенных с гигантским нервным волокном кальмара (диаметром 1 мм).


Мембранный потенциал покоя (МПП). В состоянии физиологического покоя наружная поверхность клеточной мембраны заряжена электроположительно, а внутренняя – электроотрицательно. Благодаря этому меду ними возникает разность потенциалов 60-90 мВ. Эту разность потенциалов называют мембранным потенциалом покоя (МПП) или потенциалом покоя. Возникновение потенциала покоя обусловлено неодинаковой концентрацией несущих электрические заряды ионов К, Na, СI внутри и вне клетки и разной проницаемостью для них мембраны. В клетке в 30-50 раз больше К и в 8-10 раз меньше Na, чем в тканевой жидкости. Основным анионом тканевой жидкости является CI. В клетке преобладают крупные органические анионы, которые не могут диффендировать через мембрану.

В покое проницаемость мембраны значительно выше для К, чем для Na. В силу своей высокой концентрации ионы Kстремятся выйти из клетки наружу. Сквозь мембрану они проникают на наружную поверхность клетки, но дальше уйти не могут. Крупные анионы клетки, для которых мембрана не проницаема, не могут следовать за калием, и скапливаются на внутренней поверхности мембраны, создавая здесь отрицательный заряд, который удерживает электростатической связью проскочившие через мембрану положительно заряженные ионы калия. Таким образом, возникает поляризация мембраны, потенциал покоя. По обе стороны образуется двойной электрический слой: снаружи из положительно заряженных ионов K, а внутри из отрицательно заряженных крупных анионов.

Потенциал действия (ПД). Потенциал покоя сохраняется до тех пор, пока не возникло возбуждение. Под действием раздражителя проницаемость мембраны для Naповышается. Поэтому Na сначала медленно, а затем лавинообразно устремляется внутрь клетки. Ионы натрия заряжены положительно, поэтому происходит перезарядка мембраны и ее внутренняя поверхность приобретает положительный заряд, а наружная - отрицательный. Таким образом происходит реверсия потенциала, изменение его на обратный знак (деполяризация). Он становится отрицательным снаружи и положительным внутри клетки. Однако повышение проницаемости мембраны для Na длится не долго. Она быстро снижается и повышается для K. Это вызывает усиление потока положительных ионов калия из клетки во внешний раствор. В итоге происходит реполяризация мембраны, ее наружная поверхность приобретает снова положительный заряд, а внутренняя – отрицательный.

Волна возбуждения. Волной возбуждения называют всю совокупность последовательных изменений электрического состояния мембраны. К компонентам волны возбуждения относятся пороговый потенциал, потенциал действия и следовые потенциалы.

Законы раздражения. В 1907 году Л. Лапик для характеристики скорости возникновения возбуждения предложил регистрировать два параметра – силу раздражения и время его воздействия. Между силой раздражения и длительностью его действия существует обратно пропорциональная зависимость: чем больше сила раздражения, тем меньше длительность его действия, необходимая для возникновения возбуждения, и наоборот. О возбудимости ткани судят по величине реобазы. Реобаза – это наименьшая сила тока (или напряжения), способная при неограниченном времени вызвать возбуждение ткани. Она измеряется в единицах силы или напряжения тока. Чем меньше реобаза, тем более возбудима ткань.

О скорости возникновения возбуждения судят по величине хронаксии. Хронаксия – это наименьшее время, в течении которого необходимо воздействовать на ткань электрическим током, равным удвоенной реобазе, чтобы вызвать ее возбуждение. Она измеряется в единицах времени. Чем меньше хронаксия тем быстрее возникает возбуждение.

Лабильность. Парабиоз. Лабильность (или функциональная подвижность ткани) – это способность возбудимой ткани к воспроизведению потенциалов действия в соответствии с ритмом раздражения. Она была открыта Н.Е. Введенским в 1892 г. Мерой лабильности является наибольшее число потенциалов действия, которое ткань способна воспроизвести в 1 с в соответствии с частотой действующих раздражителей. Лабильность является величиной непостоянной. Она может понижаться или повышаться. Понижение лабильности может наступить вследствие утомления. Повысить ее можно путем физических упражнений.

При действии на участок нерва различных факторов (солевые растворы, электрический ток, механические раздражения и т.д.) Н.Е. Введенский установил, что лабильность измененного участка понижается. Именно это состояние стойкого нераспространяющегося возбуждения Н.Е. Введенский назвал парабиозом. Парабиоз имеет три стадии. Первая стадия – уравнительная, когда и сильные и слабые раздражения, нанесенные нормальному участку нерва, вызывают одинаковое сокращение мышцы. Вторая стадия – пародоксальная, когда сильные раздражения вызывают слабое сокращения, а слабые раздражения – более сильные сокращения, чем обычно. Третья стадия – тормозящая, когда ни сильные, ни слабые раздражения не вызывают сокращения. Установленные открытия Н.Е. Введенского сыграли большую роль в дальнейшем развитии физиологии.

Введение

Для деятельности центральной нервной системы характерна определенная упорядоченность и согласованность рефлекторных реакций, т. е. их координация.

Взаимодействие двух нервных процессов - возбуждения и торможения, лежащих в основе всех сложных регуляторных функций организма, закономерности их одновременного протекания в различных нервных центрах, а также последовательная смена во времени определяют точность и своевременность ответных реакций организма на внешние и внутренние воздействия.

Понятия возбуждения и торможения

Функционирование условно рефлекторного механизма базируется на двух основных нервных процессах: возбуждения и торможения. Достаточно сильное раздражение органа приводит его в активное деятельное состояние - возбуждение.

Возбуждение - свойство живых организмов, активный ответ возбудимой ткани на раздражение. Основная функция нервной системы, направленная на реализацию того или иного способа активации организма. Оно проявляется в мгновенных и существенных сдвигах в процессах обмена веществ, то есть может происходить только в живых клетках. Первый и притом обязательный признак возникшего возбуждения - электрическая реакция на результат изменений электрического заряда поверхностной мембраны клеток. Затем наступает специфическая для каждого органа реакция, чаще всего выражающаяся во внешней работе: мышца сокращается, железа выделяет сок, в нервной клетке возникает импульс.

Возбудимость, то есть способность в ответ на раздражение приходить в состояние возбуждения, - одно из основных свойств живой клетки. Исчезновение возбудимости означает прекращение рабочих функций, а в конечном счете, и жизни.

Вызвать состояние возбуждения можно различными раздражителями, например механическими (укол булавкой, удар), химическими (кислота, щелочь), электрическими. Наименьшая сила раздражения, достаточная для того, чтобы вызвать минимальное возбуждение, называется порогом раздражения.

По мере укрепления условного рефлекса происходит усиление тормозного процесса.

Торможение - активный, неразрывно связанный с возбуждением процесс, приводящий к задержке деятельности нервных центров или рабочих органов. В первом случае торможение называется центральным, во втором -периферическим.

В зависимости от природы физиологического механизма, лежащего в основе тормозного эффекта на условнорефлекторную деятельность организма, различают безусловное (внешнее и запредельное) и условное (внутреннее) торможение условных рефлексов.

Торможение безусловное - разновидность коркового торможения. В отличие от условного торможения наступает без предварительной выработки. Включает в себя: 1) индукционное (внешнее) торможение; 2) запредельное (охранительное) торможение.

Внешнее торможение условного рефлекса возникает под действием другого постороннего условного или безусловного раздражителя. Когда под влиянием какого-нибудь изменения внешней или внутренней среды в коре больших полушарий возникает достаточно сильный очаг возбуждения, то вследствие отрицательной индукции, возбудимость других ее пунктов оказывается пониженной - в той или иной степени в них развивается тормозное состояние.

Индукционное (внешнее) торможение - экстренное прекращение условнорефлекторной деятельности под воздействием посторонних стимулов, биологическое значение его - преимущественное обеспечение ориентировочной реакции на неожиданно возникший раздражитель. Примером такого торможения может служить следующий опыт.

У собаки выработан прочный условный рефлекс на свет электрической лампочки. Величина реакции - 10 капель слюны за 30 секунд изолированного действия раздражителя. Включение одновременно с зажиганием лампочки нового раздражителя (звонка) привело к уменьшению условного рефлекса до 1-2 капель. На повторное действие света (без включения звонка) выделилось 7 капель слюны. Испробованный еще через несколько минут условный рефлекс на свет лампочки полностью восстановился. Таким образом, под влиянием нового постороннего раздражителя произошло торможение условного рефлекса, продолжавшееся в течение некоторого времени. Источником индукционного торможения могут оказаться и раздражения, возникающие в самом организме, например сдвиги в работе пищеварительного аппарата.

При повторном действии одного и того же постороннего раздражителя вызываемый им очаг возбуждения постепенно слабеет, явление индукции исчезает и в результате прекращается тормозящее влияние на условные рефлексы.

Если изолированное действие условного пищевого раздражителя, обычно подкрепляемого через 20 секунд, продолжать 2-3 минуты, выделение слюны прекратится. То же произойдет при чрезмерном усилении раздражения. Секреция прекращается в результате развившегося торможения. Это можно доказать, пробуя также другие условные раздражители. Примененные сразу же после удлиненного во времени или чрезмерно сильного раздражения, они вызывают слабую рефлекторную реакцию вследствие иррадиации тормозного процесса на другие клетки коры.

Торможение, развивающееся в корковой клетке под влиянием длительного или сверхсильного раздражения, Павлов назвал запредельным.

Запредельное (охранительное) торможение - торможение, возникающее при действии стимулов, возбуждающих соответствующие корковые структуры выше присущего им предела работоспособности, и обеспечивающее тем самым реальную возможность ее сохранения или восстановления.

Как индукционное, так и запредельное торможение свойственно не только коре больших полушарий, но и всем другим отделам нервной системы. Существует, однако, вид торможения, встречающийся только в высшем отделе головного мозга. Такое специфическое корковое торможение Павлов назвал условным или внутренним.

Условное (внутреннее) торможение условного рефлекса носит условный характер и требует специальной выработки. Биологический смысл его в том, что изменившиеся условия внешней среды требуют соответствующего адаптивного приспособительного изменения в условнорефлекторном поведении.

При выработке обычного условного рефлекса устанавливается связь раздражаемого пункта с другим возбужденным пунктом коры. При выработке условного торможения действие раздражителя связывается с тормозным состоянием корковых клеток. Один и тот же раздражитель в зависимости от того, с каким состоянием коры связывается его действие, может привести к образованию либо условного рефлекса, либо условного торможения. В первом случае он станет положительным условным раздражителем, а во втором - отрицательным.

Развитие торможения легко обнаружить в эксперименте. Так, у собаки предварительно были выработаны прочный условный рефлекс на удары метронома с подкреплением через 3 минуты и условные рефлексы на другие раздражители с подкреплением через 30 секунд. Затем метроном пускался в ход на 1 минуту и тотчас заменялся другим раздражителем, подкрепляемым через 30 секунд. При такой постановке опыта эффект действия второго раздражителя оказывался резко сниженным, то есть заторможенным. Очевидно, торможение, развившееся под влиянием, одноминутного действия метронома, захватило и другие участки коры.

Различают четыре вида внутреннего торможения: угасание, дифференцировка, условный стимул, запаздывание.

Если условный раздражитель предъявляется без подкрепления безусловным, то через некоторое время после изолированного применения условного стимула реакция на него угасает. Такое торможение условного рефлекса называется угасательным (угасание). Угасание условного рефлекса - это временное торможение, угнетение рефлекторной реакции. Спустя некоторое время новое предъявление условного стимула без подкрепления его безусловным вначале вновь приводит к проявлению условнорефлекторной реакции.

Если у животного или человека с выработанным условным рефлексом на определенную частоту звукового стимула (например, звука метронома с частотой 50 в секунду) близкие по смыслу раздражители (звук метронома с частотой 45 или 55 в секунду) не подкреплять безусловным стимулом, то условно рефлекторная реакция на последние угнетается, подавляется. Такой вид внутреннего (условного) торможения называется дифференцировочным торможением (дифференцировка). Дифференцировочное торможение лежит в основе многих форм обучения, связанных с выработкой тонких навыков.

Если условный стимул, на который образован условный рефлекс, применяется в комбинации с некоторым другим стимулом и их комбинация не подкрепляется безусловным стимулом, наступает торможение условного рефлекса, вызываемого этим стимулом. Этот вид условного торможения называется условным тормозом.

Запаздывательное торможение - торможение, наступающее тогда, когда подкрепление условного сигнала безусловным раздражителем осуществляется с большим опозданием (2-3 мин.) по отношению к моменту предъявления условного раздражителя.

возбуждение торможение корковый нервный